

Mood & Microbes

Jane A. Foster, Ph.D.

@jfosterlab <u>www.jfosterlab.com</u>

About the speaker...

The University of Western Ontario

EXPERTISE - PhD Scientist

- ★ Behavioural Neuroscience
- Molecular Neuroscience \star
- ★ Mood & Microbes

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

"All diseases begin in the gut."

-Hippocrates

Gut-brain Axis

1833 - Beaumont

1907 - Metchnikoff

Fermented Foods to probiotics...

- Metchnikoff inspired Minoru Shirota to investigate the connection between bacteria and good GI health
- Shirota is the inventor of Yakult the yogurt-like probiotic drink containing *Lactobacillus casei* strain Shirota - 1930

Probiotics are "live micro-organisms that when administered in adequate amounts, confer a health benefit on the host"

World Health Organization (WHO), Food and Agricultural Organization (FAO) 2015

"microbiota" or "microflora"

HOT TOPIC

Microbiome in health and disease

Let Them Them Eat Dirt Saving Your Child from an Oversanitized World

> B. BRETT FINLAY, PhD AND MARIE-CLAIRE ARRIETA, PhD

Targeting the Microbiome for Mental Health: Hype or Hope?

Jane A. Foster

Key Questions for Today :

- What do we know about the microbiome?
- How do microbes communicate with the brain?
- What is the evidence that microbes influence mood?
- What are the opportunities for therapeutic development and precision medicine approaches?

Microbes - microbiome - microbiota

- All of the surfaces of your body are covered with microbes
- Microbes include bacteria, viruses, fungi, protozoa, and parasites
- "Microbiome" refers to all of the microbes and their related genetic material
- "Microbiota" refers to the microbes themselves
- Much of the research focused on gut microbiota - also referred to as commensal bacteria

What do we know about gut microbiota?

- The gastrointestinal tract of an adult human contains 100 trillion viable bacteria
- Exposure to microbes and colonization occurs primarily at birth and continues through development
- Microbiota are essential to pathogen defence, nutrient uptake, and metabolism
- Microbiota are essential to the development and function of the immune system
- Recent evidence shows that microbiota-brain communication is important to healthy brain development

 In healthy infants, dynamic changes in microbiota composition and diversity over the first year of life - influenced by diet (breast vs bottle-fed) and mode of delivery (vaginal vs c-section)

Cell 164, January 28, 2016 @2016 Elsevier Inc.

Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans

Ron Sender,¹ Shai Fuchs,^{2,3,*} and Ron Milo^{1,*}

 Yourbody is mostly microbes

Enterotypes of the human gut microbiome

Manimozhiyan Arumugam¹*, Jeroen Raes^{1,2}*, Eric Pelletier^{3,4,5}, Denis Le Paslier^{3,4,5}, Takuji Yamada¹, Daniel R. Mende¹, Gabriel R. Fernandes^{1,6}, Julien Tap^{1,7}, Thomas Bruls^{3,4,5}, Jean Michel Batto⁷, Marcelo Bertalan⁶, Natalia Borruel⁹, Francesc Casellas⁹, Leyden Fernandez¹⁰, Laurent Gautier⁸, Torben Hansen^{11,12}, Masahira Hattori¹³, Tetsuya Hayashi¹⁴, Michiel Kleerebezem¹⁵, Ken Kurokawa¹⁶, Marion Leclerc⁷, Florence Levenez⁷, Chaysavanh Manichanh⁹, H. Bjørn Nielsen⁸, Trine Nielsen¹¹, Nicolas Pons⁷, Julie Poulain³, Junjie Qin¹⁷, Thomas Sicheritz-Ponten^{8,18}, Sebastian Tims¹⁵, David Torrents^{10,19}, Edgardo Ugarte³, Erwin G. Zoetendal¹⁵, Jun Wang^{17,20}, Francisco Guamer⁹, Oluf Pedersen^{11,21,22,23}, Willem M. de Vos^{15,24}, Søren Brunak⁸, Joel Doré⁷, MetaHIT Consortium[†], Jean Weissenbach^{3,4,5}, S. Dusko Ehrlich⁷ & Peer Bork^{1,25}

Key points to consider

- Inter-individual differences in healthy human gut microbiota can be reduced by clustering individuals into subgroups, referred to as enterotypes, based on enrichment of specific taxa at the genus level
- Several tools available to examine the microbiome (composition, function, and active gene expression)

Human Microbiome Project

- Human microbiome project Phase I HMP, Phase II iHMP
- Phase I HMP examined diversity and composition of the human microbiome in healthy individuals
- Phase 2 iHMP examines the role of the microbiome in human health and disease longitudinal (3 y) studies on pregnancy, gut disease onset (IBD), and respiratory viral infection and onset of type 2 diabetes
- information and publications to data at https:// www.hmpdacc.org/hmp/

Many factors are important to gut health and the composition of gut bacteria?

14

How do microbiota communicate with the brain?

1. Neural

2. Humoral

- 3. Cellular
- 4. Metabolites
- 5. Neuroactive molecules

What is the benefit of looking at microbes and mental health?

- Identification of biomarkers that will help understand individual biological differences and help subgroup clinical populations to predict best treatment
- Identify individuals at risk for early intervention
- Provide novel targets for drug development
- Expansion and development of diet, prebiotic, probiotic, or other intervention strategies for psychiatric illness

The starting point...

Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice Sudo et al 2004 J Physiol 558: 263-275

Nobuyuki Sudo^{1,2}, Yoichi Chida¹, Yuji Aiba^{3,4}, Junko Sonoda¹, Naomi Oyama¹, Xiao-Nian Yu¹, Chiharu Kubo¹ and Yasuhiro Koga³

¹Department of Psychosomatic Medicine and ²Department of Health Care Administration & Management, Graduate School of Medical Sciene Kyushu University, Fukuaka, Jupan, ³Department of Infectious Diseases, Tokai University School of Medicine, Isehana, Kanagawa, Jupan and ⁴Wakama Pharmaceutical Co. Ltd, Ohi-machi, Kanagawa, Japan

(pg/mi)

200

150

100

50

Germ-free mice showed exaggerated stress response

ACTH

Corticosterone

Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice

Nobuyuki Sudo^{1,2}, Yoichi Chida¹, Yuji Aiba^{3,4}, Junko Sonoda¹, Naomi Oyama¹, Xiao-Nian Yu¹, Chiharu Kubo¹ and Yasuhiro Koga³

¹Department of Psychosomatic Medicine and ²Department of Health Gare Administration & Management, Graduate School of Medical Sciene Kyushu University, Fukuoka, Japan, ³Department of Infectious Diseases, Tokai University School of Medicine, Isehana, Kanagawa, Japan and ⁴Wakamu Pharmaceutical Co. Ltd, Ohi-machi, Kanagawa, Japan

Colonization with Bifidobacterium normalized stress response

Neurogastroenterology & Motility

Neurogastroenterol Motil (2011) 23, 255-e119

Reduced anxiety-like behavior and central neurochemical change in germ-free mice

K. M. NEUFELD, ", \dagger N. KANG, ", \ddagger J. BIENENSTOCK ", \S & J. A. POSTER ", \ddagger

Normal gut microbiota modulates brain development and behavior

Rochellys Diaz Heijtz^{s,b,1}, Shugui Wang^c, Farhana Anuar^d, Yu Qian^{s,b}, Britta Björkholm^d, Annika Samuelsson^d, Martin L. Hibberd^c, Hans Forssberg^{b,e}, and Sven Pettersson^{c,d,4}

> Molecular Psychiatry (2012), 1-8 © 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12 www.nature.com/mp

ORIGINAL ARTICLE

The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner

G Clarke^{1,2}, S Grenham¹, P Scully¹, P Fitzgerald¹, RD Moloney¹, F Shanahan^{1,3}, TG Dinan^{1,2} and JF Cryan^{1,4}

20

open arm entries

Adolescence is a key window for microbiota-brain interactions that influence anxiety

Foster & McVey Nefeld, 2013 TINS

Corticosterone

Time (min)

Swiss Webster Mice

significant basal increase in GF compared to SPF

*significant RS increase compared to CON

• significant increase compared to SPF RS

significant basal increase in GF compared to SPF *significant RS increase compared to CON

Lessons learned from germ free mice

 microbiota influence behaviour, stress circuitry, stress responsively, and brain structure

IMPORTANCE OF ENTERIC NERVOUS SYSTEMWest et al, 2016; McVey Neufeld et al, 2013

Luczynski et al 2016; Int J Neuropsychopharm

The host microbiota contributes to anxietylike phenotype

Host Genetics influences Behaviour

500-

400

300-

200

100

Balb/C F

Balb/C M

No social

preference

Fime in Zone (s)

Elevated Plus Maze behaviour

250-INTERSECTION CLOSED 200-OPEN Ī Time in Zone (s) đ 150-100-Ā Đ 50đ Π Ω **FVB** B6 BALBC Strain

Social behaviour

FVB F

FVB M

B6 F

Normal social preference

B6 M

Self-grooming behaviour

16s rRNA analysis of bacterial composition

Are specific taxa associated with different strains of mice?

PCo1 (40.30 %)

Can peripheral measures such as microbiota explain heterogeneity in health and disease?

Can peripheral measures such as microbiota explain heterogeneity in health and disease?

Cryan and Dinan 2012 Nat Rev Neurosci 701-712

Nature Reviews | Neuroscience

Do microbes influence brain function and behaviour in people?

Brain Structure and Response to Emotional Stimuli as Related to Gut Microbial Profiles in Healthy Women

Kirsten Tillisch, MD, Emeran A. Mayer, MD, PhD, Arpana Gupta, PhD, Zafar Gill, BSc, Rémi Brazeilles, MSc, Boris Le Nevé, PhD, Johan E.T. van Hylckama Vlieg, PhD, Denis Guyonnet, PhD, Muriel Derrien, PhD, and Jennifer S. Labus, PhD

- In healthy women, identified two enterotypes/clusters, a Bacteroides cluster and a Prevotella cluster
- Using functional MRI, structural MRI and diffusion tensor imaging, the investigators identified association between these 2 groups and emotional response, white matter connectivity, and brain volume

What is the evidence that microbes influence mood in people?

- Several studies have shown that the gut-brain axis may play an important role in brain development, behaviour, and mood
- In particular, studies have examined the impact of probiotics on stress systems in healthy individuals
- Several studies have show benefit of probiotic consumption in healthy individuals
 - improved mood (Benton et al 2007)
 - influenced brain activity in emotional centers in healthy individuals (Tillisch et al 2013)
 - showed a beneficial effect on anxiety and depressive measures and reduced stress hormone levels (Messaoudi et al 2011)
 - showed reduction in cognitive reactivity to sad mood, specifically ruminative thoughts (Steenbergen et al 2015)

Significant contribution of host genetics to composition of the microbiome

Human Genetics Shape the Gut Microbiome

Julia K. Goodrich,^{1,2} Jillian L. Waters,^{1,2} Angela C. Poole,^{1,2} Jessica L. Sutter,^{1,2} Omry Koren,^{1,2,7} Ran Blekhman,^{1,8} Michelle Beaumont,³ William Van Treuren,⁴ Rob Knight,^{4,5,8} Jordana T. Bell,³ Timothy D. Spector,³ Andrew G. Clark,¹ and Ruth E. Ley^{1,2,*} Cell *159*, 789–799, November 6, 2014 ©2014 Elsevier Inc.

MZ twins have a more similar microbiota than DZ twins

Authors

Shirong Liu, Andre Pires da Cunha, Rafael M. Rezende, ..., Laurie E. Comstock, Roopali Gandhi, Howard L. Weiner 32

Cell Host & Microbe The Host Shapes the Gut Microbiota via Fecal MicroRNA

Graphical Abstract

Gut bacteria and depression

Correlation between the human fecal microbiota and

depression

Neurogastroenterol Motil (2014) 26, 1155-1162

A. Promission and the second s

Altered fecal microbiota composition in patients with major depressive disorder

Haiyin Jiang^{a,1}, Zongxin Ling^{a,1}, Yonghua Zhang^{b,1}, Hongjin Mao^c, Zhanping Ma^d, Yan Yin^c, Weihong Wang^e, Wenxin Tang^c, Zhonglin Tan^c, Jianfei Shi^c, Lanjuan Li^{a,2}, Bing Ruan^{a,*}

Possible association of *Bifidobacterium* and *Lactobacillus* in the gut

Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat

Journal of Psychiatric Research 82 (2016) 109–118

John R. Kelly ^{a, b}, Yuliya Borre ^a, Ciaran O' Brien ^{a, c}, Elaine Patterson ^{a, c}, Sahar El Aidy ^{a, d}, ^{THIOSIII Kullugr Jennifer Deane ^c, Paul J. Kenned Alan E. Hoban ^a, Lucinda Scott ¹ Gerard Clarke ^{a, b}, John F. Cryan Prevotella and Klebsiella proportions in feeal microbial communities are potential characteristic parameters for patients with major depressive disorder Ping Lin^{a,1}, Bingyu Ding^{b,e,1}, Chunyan Feng^d, Shuwei Yin^b, Ting Zhang^b, Xin Qi^b, Huiying Lv^b, Xiaokui Guo^c, Ke Dong^c, Yongzhang Zhu^{e,1}, Qingtian Li^{b,*,1}}

Gut bacteria and depression

Table 1. Bacterial taxa differences observed in individuals with major depressive disorder

Experimental Design				
Reference	MDD Sample (n)	Comparison Group (n)	OTU Picking	Taxon Assignment
Naseribafrouei et al 2014	mild to severe MDD (37)	neurological outpatient (18)	Closed Reference, UClust modified	RDP database
Jiang et al 2015	mild to moderate MDD (29)	healthy volunteers (30)	Mothur ver1.25.0, custom Perl scripts	RDP database
Kelly et al 2016	MDD (34)	healthy volunteers (33)	USEARCH v7	BLAST, Silva v.111
Zheng et al 2016	MDD (58)	healthy volunteers (63)	Roche software	RDP database
Lin et al 2017	MDD (10)	healthy volunteers (10)	Mothur v.1.30	Silva v.119 in mothur

Differences in Relative Abu	ndance			
Phyla	Order	Class	Family	Genus
Naseribfrouei et al 2014 - m	ethod			
Bacteroidetes (up)		Bacteroidales (down)	Lacnopiraceae (down)	Alistipes (up)
				Oscillibacter (up)
Jiang et al 2015 - Mothur m	etastats			
Bacteroidetes (up)			Acidaminoccocaceae (up)	Alistipes (up)
Proteobacteria (up)			Enterobacteriaceae (up)	Blautia (up)
Firmicutes (down)			Fusobacteriaceae (up)	Clostridibum XIX (up)
			Porphyromonadaceae (up)	Lachnospiacea (up)
			Rikenellaceae (up)	Megamonas (up)
			Bacteroidaceae (down)	Parabacteroides (up)
			Erysipelotrichaceae (down)	Parasutterella (up)
			Lacnopiraceae (down)	Phascolarctobacterium (up)
			Prevotellaceae (down)	Oscillibacter (up)
			Ruminococcaceae (down)	Roseburia (up)
			Veillonellaceae (down)	Bacteroides (down)
				Dialister (down)
				Faecalibacterium (down)
				Prevotella (down)
				Ruminococcus (down)
iang et al 2015 - LefSe LDA;	alpha leve = 0.05, effe	ct size threshold = 2		
I	Enterobacteriales (up)		Polphyromonadaceae (up)	Alistipes (up)
			Eneterobacteriaceae (up)	Parabacteroides (up)
			Rikenellaceae (up)	Butyricimonas (up)
			Erysipelotrichaceae (up)	Flavonifractor (up)
			Peptostreptococcaceae (down)	Haemophilus (down)
			Pasterueliaceae (down)	Dialister (down)
			Ruminococcaceae (down)	Faecalibacterium (down)
			- •	Escherichia shigella (down)
				Ruminococcus (down)
Kelly et al 2016 - Mann-Whi	tney U test, FDR adjust	ed 10%		
			Prevoellaceae (down)	Prevotella (down)
			Thermoanaerobacteriaceae (up)	Dialister (down)
				Eggerthella (up)
				Holdemania (up)
				Gelria (up)
				Turicibacter (up)
				Paraprevotella (up)
				Anaerofilum (up)

		Anderegnann (ap)
Lin et al 2017 - Student's t-test (Phyla) and Wilcoxon's Sign Rank Test (Genus)		
Bacteroidetes (down)		Prevotella
Firmicutes (up)		Klebsiella
		Steptococcus
		Clostridibum XIX
Zheng et al 2016 - Random Forest Classifier		
	Actinomycineae (up)	Parvimonas (up)
	Coriobacterineae (up)	Anerostipes (up)
	Lactobacillaceae (up)	Blautia (up)
	Streptococcaceae (up)	Dorea (up)
	Clostridales incertae sedis XI (up)	Lachnospiraceae incertae sedis (up)
	Eubacteriaceae (up)	Clostridium IV (up)
	Lachnospiraceae (up)	Alistipes (down)
	Ruminococcaceae (up)	Coproccus (down)
	Erysipelotrichaceae in certae sedis (up)	Clostridium XIVa (down)
	Bacteroidaceae (down)	Phascolarctobacterium (down)
	Rikenellaceae (down)	Megamonas (down)
	Lachnospiraceae (down)	Lachnospiraceae incertae sedis (down)
	Acidaminococcaceae (down)	Roseburia (down)
	Vellonellaceae (down)	Faecalibacterium (down)
	Sutterellaceae (down)	

Gut bacteria and depression

Nutrition 32 (2016) 315–320	Applied nutritional investigation		
	Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial		
	Ghodarz Akkasheh M.D. ^ª , Zahra Kashani-Poor M.D. ^ª , Maryam Tajabadi-Ebrahimi Ph.D. ^b , Parvaneh Jafari Ph.D. ^c , Hossein Akbari Ph.D. ^d , Mohsen Taghizadeh Ph.D. ^e , Mohammad Reza Memarzadeh Ph.D. ^f , Zatollah Asemi Ph.D. ^e ,*, Ahmad Esmaillzadeh Ph.D. ^{g,h,i}		

- Probiotic supplementation for 8 week compared to placebo Lactobacillus case, L. acidophilus, Bifidobacterium bifidum
- Probiotic supplement was associated with
 - reduced depression scores (Beck Depression Score)
 - reduced serum insulin
 - reduce inflammatory marker C-reactive protein

Benefits of probiotics - animal studies linked to mental health

Beneficial probiotics - single species	5		
Bacteria	Benefits observed	Animal Model	Ref
Bifidobacteria infantis	Reduced inflammation	Sprague-Dawley rats	Desbonnet et al 2009
B.longum	Reduced anxiety-like behaviour	Balb/C mice	Savignac et al 2014
	Reduced depressive-like behaviour		
B. breve	Reduced anxiety-like behaviour	Balb/C mice	Savignac et al 2014
B.longum	Improved recognition memory	Balb/C mice	Savignac et al 2015
	Improved spatial learning		
	Reduced fear behaviour		
B. breve	Improved recognition memory	Balb/C mice	Savignac et al 2015
B. longum	Reduced infection-related anxiety-like behaviour	AKR mice	Bercik et al 2010
Lactobacillus rhamnosus	Reduced anxiety-like behaviour	Balb/C mice	Bravo et al 2011
	Reduced depressive-like behaviour		
	Reduced stress hormones		
L. helveticus	Reduced anxiety-like behaviour	Sprague-Dawley rats	Liang et al 2015
	Reduced stress hormones		
L. reuteri	Reduced stress-related infectious colonization	CD1 mice	Mackos et al 2013
L. reuteri	Reduced stress/infection-related inflammatory mediators	CD1 mice	Mackos et al 2016
L. pentosus	Improved age-related deficits in spatial memory	Fischer rats	Jeong et al 2015
	Reduced inflammation		
L. pentosus	Protected against stress-induced deficits in memory	C57BI/6 mice	Woo et al 2014
	Reduced inflammation		
Mycobacterium vaccae	Improved spatial learning	Balb/C mice	Matthews et al 2013
M. vaccae	Reduced stress-related infectious colonization	C57Bl/6 mice	Reber et al 2016
	Deduced stress related enviots like behaviour		

Reduced stress-related anxiety-like behaviour

Benefits of probiotics - animal studies linked to mental health

Beneficial probiotics - combination

Bacteria	Benefits observed	Animal Model	Ref
Combnation: L. helveticus, B. longum	Reduced stress hormones	C57BI/6 mice	Ait-Beignaoui et al 2012
	Prevented stress-related decrease in neurogenesis		
	Protected gut barrier integrity		
Combnation: L. helveticus, L. rhamnosus	Protected against stress-induced deficits in recognition memory	C57BI/6 mice	Gareua et al 2011
Combination: <i>L, acidophilus, B. lactis, L. fermentum</i>	Improved spatial learning	Wistar rats	Davari et al 2013
Combination: L. acidophilus, B. lactis, L. fermentum	Synaptic transmission	Wistar rats	Davari et al 2013
Combination: <i>Streptococcus</i> <i>salivarius, B. breve, B. infanti, B.</i> <i>longum, L. acidophilis, L. planarum,</i> <i>L. casei, L. delbrueeki</i>	Reduced inflammation	C57BI/6 mice	D'Mello et al 2015

Benefits of probiotics - animal studies linked to mental health

Beneficial probiotics - combination

Bacteria	Benefits observed	Animal Model	Ref
Combnation: L. helveticus, B. longum	Reduced stress hormones	C57BI/6 mice	Ait-Beignaoui et al 2012
	Prevented stress-related decrease in neurogenesis		
	Protected gut barrier integrity		
Combnation: L. helveticus, L. rhamnosus	Protected against stress-induced deficits in recognition memory	C57BI/6 mice	Gareua et al 2011
Combination: <i>L, acidophilus, B. lactis, L. fermentum</i>	Improved spatial learning	Wistar rats	Davari et al 2013
Combination: L. acidophilus, B. lactis, L. fermentum	Synaptic transmission	Wistar rats	Davari et al 2013
Combination: <i>Streptococcus</i> <i>salivarius, B. breve, B. infanti, B.</i> <i>longum, L. acidophilis, L. planarum,</i> <i>L. casei, L. delbrueeki</i>	Reduced inflammation	C57BI/6 mice	D'Mello et al 2015

Benefits of probiotics on mood

Table 1. Benefits of probiotics on mood

Bonofit	Pactorial Taxa	Population	Doco (CEU)	Pof
benefic Improved Mand			CV10 ⁹ /dou	[4]
Improved Wlood	Lactobacillus casel	Healthy Individuals	6X10/day	
Reduced anxiety and depressive	Lactobacillus helveticus R0052	Healthy Individuals	3 X10³/day	[2]
measures	Bifidobacterium longum R0175			
Reduced anxiety measures	Lactobacillus casei	Chronic fatigue	2.4 X10 ¹⁰ /day	[3]
		syncrome	941	
Reduced stress hormone levels	Lactobacillus helveticus R0052	Healthy Individuals	3X10 [°] /day	[2]
	Bifidobacterium longum R0175			
Reduced engagement of brain	Streptococcus thermophilis (CNCM I-1630)	Healthy Individuals	1.2 X10 ⁹ /day	[4]
network to emotion recognition	Lactobacillus bulgaricus (CNCM I-1632 and I-1519)			
task	Lactococcus lactis supsp lactis (CNCM I-1631)			
	Bifidobacterium animalis subsp lactis (CNCM I-2494)		1.25 X10 ⁹ /day	
Reduction in cognitive reactivity to	Bifidobacterium bifidum W23	Healthy Individuals	5 X10 ⁹ /day	[5]
sad mood	Bifidobacterium lactis W52			
	Lactobacillus acidophilus W37			
	Lactobacillus brevis W63			
	Lactobacillus casei W56			
	Lactobacillus salivarius W24			
	Lactococcus lactis W19 and W58			
Reduced depression scores	Lactobacillus casei	Major depression	2 X X10 ⁹ /day	[6]
	Lactobacillus acidophilus			
	Bifidobacterium bifidum			
Reduced serum insulin	Lactobacillus casei	Major depression	2 X X10 ⁹ /day	[6]
	Lactobacillus acidophilus			
	Bifidobacterium bifidum			
Reduced inflammation	Lactobacillus casei	Major depression	2 X X10 ⁹ /day	[6]
	Lactobacillus acidophilus			
	Bifidobacterium bifidum			

CFU – colony forming units; R – Probio'Stick: batch no. 6533308; Institut Rosell-Lallemand, Blagnac, France; CNCM – French National Collection of Cultures of Microorganisms, Paris, France; W – Ecologic Barrier, Winclove probiotics, The Netherlands

Benefits of probiotics on mood

- Benton, D., C. Williams, and A. Brown, *Impact of consuming a milk drink containing a probiotic on mood and cognition*. Eur J Clin Nutr, 2007. 61(3): p. 355-61.
- Messaoudi, M., et al., Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes, 2011. 2(4): p. 256-61.
- Bao, A.V., et al., A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog, 2009. 1(1): p. 6.
- Tillisch, K., et al., Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 2013. 144(7): p. 1394-401, 1401 e1-4.
- Steenbergen, L., et al., A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun, 2015.
- Akkasheh, G., et al., Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition, 2016. 32(3): p. 315-20.

Many factors are important to gut health and the composition of gut bacteria?

43

Research Funding Sources

Canada Foundation for Innovation

Fondation canadienne pour l'innovation

Collaborators

Jason Lerch Jacob Ellegood Mike Surette Aadil Bharwani OBI POND research group CAN-BIND research group

Former Lab Members

Jonathon Lai Kelly Rilett Karen-Anne McVey-Neufeld Linda Zhou Robyn MacKenzie James St. Pierre Daiana Pogacean

<u>Current Lab</u> <u>Members</u>

Shawna Thompson Rachael Horne Cassandra Francesca Bryce Kwiecien-Delaney Owen Luo Alexandra Moyssakos Emily Long-Huckle

Trends in Neurosci ences May 2013 Vol. 36 No. 5, pp. 259-312 ISSN 0166-223

Trends in ______ Neurosciences

Gut-brain axis: how the microbiome influences brain function

Thanks to: Dr. Renee Jackson (PhD Art Education) Dr. Suzanne McCallaugh (PhD Philosophy) Dr. Dominic Letarte (PhD Computer Science)