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SUMMARY

Nicotinamide adenine dinucleotide (NAD+) is modu-
lated by conditions of metabolic stress and has
been reported to decline with aging in preclinical
models, but human data are sparse. Nicotinamide
riboside (NR) supplementation ameliorates meta-
bolic dysfunction in rodents. We aimed to establish
whether oral NR supplementation in aged partici-
pants can increase the skeletal muscle NAD+ metab-
olome and if it can alter muscle mitochondrial
bioenergetics. We supplemented 12 aged men with
1 g NR per day for 21 days in a placebo-controlled,
randomized, double-blind, crossover trial. Targeted
metabolomics showed that NR elevated the muscle
NAD+ metabolome, evident by increased nicotinic
acid adenine dinucleotide and nicotinamide clear-
ance products. Muscle RNA sequencing revealed
NR-mediated downregulation of energy metabolism
and mitochondria pathways, without altering mito-
chondrial bioenergetics. NR also depressed levels
of circulating inflammatory cytokines. Our data
establish that oral NR is available to aged human
muscle and identify anti-inflammatory effects of NR.

INTRODUCTION

Aging is characterized by a decline inmetabolic and physiological

functions of all organs within the body. A hallmark feature of aging

is the progressive loss of skeletal muscle mass and function that
Cell Re
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can progress to sarcopenia, which is associated with significant

morbidity and mortality and substantial healthcare costs (Kim

and Choi, 2013; Sousa et al., 2016). Exercise is considered a

frontlinemodality to combat age-relatedmuscle decline (Costford

et al., 2010). However, nutritional strategies may also offer an

effective countermeasure to age-associatedmorbidities and pro-

mote healthy muscle aging (Bogan and Brenner, 2008).

Nicotinamide adenine dinucleotide (NAD+) homeostasis is crit-

ical to cell and organismal function. In addition to its classical role

in redox metabolism, NAD+ is a substrate for enzymes such as

sirtuins, poly-ADPribose polymerases (PARPs), and cyclic

ADPribose synthetases that regulate key cellular processes of

energy metabolism, DNA damage repair, and calcium signaling

(Yoshino et al., 2018). Improving NAD+ availability via the supple-

mentation of the NAD+ precursor nicotinamide riboside (NR)

(Bieganowski and Brenner, 2004; Trammell et al., 2016a) has

emerged as a potential strategy to augment tissue-specific

NAD+ homeostasis and improve physiological function (Elhas-

san et al., 2017). A range of physiological stresses associated

with the depletion of NAD+ and/or nicotinamide adenine dinucle-

otide phosphate hydrogen (NADPH) have been ameliorated with

NR supplementation in mice, including prevention of noise-

induced hearing loss (Brown et al., 2014), resistance to weight

gain (Cantó et al., 2012), reduction of blood glucose, hepatic

steatosis and neuropathy on a high-fat diet (Trammell et al.,

2016b), improvement of cardiac function in genetic cardiomyop-

athy (Diguet et al., 2018), and prevention of cortical neuronal

degeneration (Vaur et al., 2017). Depletion of the enzyme nicotin-

amide phosphoribosyltransferase (NAMPT), rate-limiting for

NAD+ biosynthesis, in mouse skeletal muscle severely dimin-

ishes NAD+ levels and induces sarcopenia. Oral repletion of

NAD+with NR in this model rescued pathology in skeletal muscle
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in a cell-autonomous manner (Frederick et al., 2016). However,

recent data in mice tracing NAD+ fluxes questioned whether

oral NR has the ability to access muscle (Liu et al., 2018).

Thus, whether oral NR can augment the human skeletal muscle

NAD+ metabolome is currently unknown.

A decline in NAD+ availability and signaling appears to occur

as part of the aging process in many species (Gomes et al.,

2013; Mouchiroud et al., 2013), though there is a paucity of

data to confirm that this is the case in human aging. NR and

nicotinamide mononucleotide (NMN) are reported to extend

life spans (Zhang et al., 2016) and enhance metabolism in

aged mice (Mills et al., 2016). To date, NR supplementation

studies in humans have focused on cardiovascular (Martens

et al., 2018), systemic metabolic (Dollerup et al., 2018), exer-

cise (Dolopikou et al., 2019), and safety (Conze et al., 2019)

end-points, but have not addressed advanced aging, tissue

metabolomic changes, or effects on muscle metabolism and

function.

Herein, we set out to study if oral NR is available to aged hu-

man skeletal muscle and whether potential effects on muscle

metabolism can be detected. We conducted a 21-day NR sup-

plementation intervention in a cohort of 70–80-year-old men in

a placebo-controlled, double-blind, crossover trial. We demon-

strate that NR augments the skeletal muscle NAD+ metabolome,

inducing a gene expression signature suggestive of downregula-

tion of energy metabolism pathways, but without affecting mus-

cle mitochondrial bioenergetics or metabolism. Additionally, we

show that NR suppresses specific circulating inflammatory cyto-

kine levels.

RESULTS

Oral NR Is Safe and Well-Tolerated in Aged Adults
Twelve aged (median age of 75 years) and marginally over-

weight (median BMI of 26.6 kg/m2; range 21–30), but other-

wise healthy, men were recruited and orally supplemented

with 1-g NR per day for 21 days in a placebo-controlled, ran-

domized, double-blind, crossover design, with 21 days’

washout period between phases. Baseline characteristics

of participants are included in Table S1. NR chloride

(Niagen) and a placebo were provided as 250-mg capsules

(ChromaDex), and subjects were instructed to take two in

the morning and two in the evening. All participants completed

the study visits (5 in total) and assessments according to pro-

tocol (Figure S1). Visit 1 was a screening and enrollment visit,

while visit 4 was after the washout period, and only fasting

blood and 24-h urine were collected. The protocol design for

visits 2, 3, and 5 included muscle biopsy, fasting blood ana-

lyses, glucose tolerance test, muscle arterio-venous difference

technique, venous occlusive plethysmography, and indirect

calorimetry analysis (Figure S1). NR was well tolerated, and

screening for a range of hematological and clinical biochem-

istry safety parameters (including renal, liver, and thyroid func-

tions) revealed no adverse effects (Table S2). No clinical

adverse events were reported during the intervention in either

phase. Of note, four participants (33.3%), blinded to the inter-

vention arm, self-reported a noticeable increase in libido while

on NR. There were no such reports while on the placebo.
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Oral NR Augments the Skeletal Muscle NAD+

Metabolome
To assess the effects of NR supplementation on NAD+ meta-

bolism, we used a targeted liquid chromatography-mass spec-

trometry (LC-MS/MS) method (Trammell and Brenner, 2013) to

quantify the NAD+metabolome in skeletal muscle, whole venous

blood, and urine.We examined the NAD+metabolome in skeletal

muscle biopsies from all participants in a fasted state at baseline

and after theNR and placebo phases, 14 h after the last dose and

prior to the physiological assessments. Samples were collected

14 h after the last dose so participants could attend in a fasted

state, as well as to evaluate the effects of longer-term NR admin-

istration rather than those of an acute dose. Fourteenmetabolites

weremeasured inmuscle extracts (Figures 1 and S2A; Table S3).

NRwas detectable inmuscle but was not elevated in theNR sup-

plementation period (NR 1.4 pmol/mg mM versus placebo 1.25

pmol/mg; p = 0.23). Consistent with nicotinic acid adenine

dinucleotide (NAAD) as a highly sensitive biomarker of NR

supplementation and an enhanced rate ofNAD+ synthesis (Tram-

mell et al., 2016a), we found that oral NR resulted in a 2-fold in-

crease in muscle NAAD (NR 0.73 pmol/mg versus placebo

0.35 pmol/mg; p = 0.004), without an increase in NAD+ (NR 210

pmol/mg versus 197 pmol/mg; p = 0.22). NR supplementation

did not affect muscle nicotinamide (NAM) (NR 92.0 pmol/mg

versus placebo 86.5 pmol/mng; p = 0.96). However, remarkably,

we detected 5-fold increases in the products of NAMmethylation

clearance pathways; N-methyl nicotinamide (MeNAM; NR 1.45

pmol/mg versus placebo 0.35 pmol/mg; p = 0.006), N1-methyl-

2-pyridone-5-carboxamide (Me-2-py; NR 6.6 pmol/mg versus

placebo 1.1 pmol/mg; p < 0.001), and N1-methyl-4-pyridone-5-

carboxamide (Me-4-py; NR 1.6 pmol/mg versus placebo

0.3 pmol/mg; p < 0.001) (Figures 1 and S2A; Table S3).

In the blood, we measured 15 metabolites from each partici-

pant at baseline and following each of the NR, placebo, and

washout periods (Figures 1 and S2B; Table S3). NR was also

detectable in the blood but was not increased, compared to

the placebo at 14 h after the last dose of NR (NR 0.16 mM versus

placebo 0.15 mM; p = 0.31). This is expected, as the predicated

Cmax for NR is approximately 3 h (Airhart et al., 2017). NR

increased the concentrations of NAD+ >2-fold (NR 47.75 mM

versus placebo 20.90 mM; p < 0.001) and NMN 1.4-fold (NR

1.63 mM versus placebo 1.13 mM; p < 0.001). A recent study re-

ported that oral NR is rapidly metabolized in the liver to NAM,

which can enhance tissue NAD+ metabolomes (Liu et al.,

2018). However, chronic NR supplementation did not elevate

NAM in the blood (NR 10.60 mM versus placebo 9.50 mM;

p = 0.41). Again, NAM urinary clearance pathways were highly

active following NR, with marked excess of MeNAM

(NR 0.66 mM versus placebo 0.10 mM; p < 0.001), Me-2-py (NR

7.69 mM versus placebo 1.44 mM; p < 0.001), and Me-4-py (NR

3.82 mM versus placebo 0.48 mM; p < 0.001) (Figures 1 and

S2B; Table S3). NR elevated blood NAAD levels by 4.5-fold

(NR 0.18 mM versus placebo 0.04 mM; p < 0.001).

Urinary NAD+ metabolomics showed that NR was detectable

and increased with NR supplementation (NR 41.5 mmol/mol

creatinine versus placebo 31.7 mmol/mol creatinine; p = 0.02)

(Figure 1). Furthermore, a near-20-fold increase in nicotinic

acid riboside (NAR; NR-185.5 mmol/mol creatinine versus



Figure 1. NR Augments the Human Skeletal Muscle NAD+ Metabolome

Schematic representation of nicotinamide riboside (NR) metabolism within the nicotinamide adenine dinucleotide (NAD+) metabolome, accompanied by

observed levels of metabolites measured using LC-MS/MS in skeletal muscle, whole blood, and urine at baseline and after each of the NR and placebo periods.

NAD+metabolomics data at the end of thewashout period are shown in Table S3. Skeletal muscle datawere normalized to theweight of themuscle pellet used for

extraction. Urine data were normalized to urinary creatinine. Other metabolites are shown in Figure S2. Data are obtained from 12 participants at each phase and

presented asmean ± SEM. Significance was set at p < 0.05 using paired t tests and represents the differences between NR and the placebo and between NR and

baseline. The absence of significance symbols indicates a lack of statistical significance. BLQ, below limit of quantification; NMN, nicotinamidemononucleotide;

NAAD, nicotinic acid adenine dinucleotide; NAM, nicotinamide; NAMOx, nicotinamide N-oxide; MeNAM, N-methyl nicotinamide; Me-2-py, N1-Methyl-2-pyr-

idone-5- carboxamide.
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Figure 2. NR Supplementation Induces a Transcriptional Signature in Human Skeletal Muscle

(A) Differential gene expression analysis on baseline and NR-treated muscle samples (n = 12 at each phase). Volcano plot of differential gene expression

between baseline and NR treated human muscle samples. Fold change (Log2, x axis) of gene expression is plotted against p value for differential gene expression

(–Log10, y axis). Colored dots represent Ensembl genes that are either upregulated (in orange) or downregulated (in blue) upon NR supplementation at a

p value < 0.05.

(B and C) Gene Ontology analysis of significantly dysregulated genes upon NR supplementation for (B) downregulated genes and (C) upregulated genes. Gene

Ontology analysis was performed using GSEA. Bars represent the p value (–Log10) of overlap from hypergeometric distribution.

(D) Gene set enrichment analysis (GSEA) suggests that genes belonging to the gene set ‘‘glycolysis’’ are downregulated upon NR supplementation. The

normalized enrichment score (NES) and nominal p value are presented on the top-left corner of the graph.

(E) As in (D), but for genes involved in the TCA cycle.

(F) As in (D), but for genes involved in the gene set ‘‘mitochondria.’’

(G) A qPCR analysis of a select panel of downregulated genes identified through differential gene expression analysis. GAPDHwas used as housekeeping gene.

Error bars represent SEM (n = 12).

(H) As in (G), but for NAD+ pathway-related genes.

(I) Quantification of phosphoglycerate kinase 1 (PGK1), phosphoglucomutase 1 (PGM1), and pyruvate kinase M1 (PKM1) proteins using immunoblotting assay.

Tubulin was used as a loading control.

Data are obtained from 12 participants at each phase and wherever relevant are presented as mean ± SEM. Significance was set at p < 0.05. The absence of

significance symbols indicates a lack of statistical significance.
placebo-10.3 mmol/mol creatinine; p = 0.001) was observed.

This observation may support the suggestion that NR supple-

mentation leads to retrograde production of NAAD, nicotinic

acid mononucleotide (NAMN), and NAR (Trammell et al.,

2016a). However, direct NR transformation into NAR cannot be

excluded. Unlike muscle and blood, NAM was elevated in the

urine 2.5-fold (NR-282 mmol/mol creatinine versus placebo-

106.5 mmol/mol creatinine; p = 0.004). These data establish the

extent and breadth of changes to NAD+ metabolites in human

muscle, blood, and urine after NR supplementation. The data

indicate that oral NR greatly boosts the blood NAD+metabolome
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without an increase in NAM, increases muscle NAD+ meta-

bolism, and leads to the disposal of urinary clearance products.

Oral NR Results in Downregulation of Gene Sets
Associated with Energy Metabolism in Skeletal Muscle
We next assessed NR-mediated transcriptional changes in skel-

etal muscle. RNA sequencing followed by differential gene

expression (DGE) analysis of muscle biopsies from the 12 partic-

ipants revealed 690 upregulated and 398 downregulated genes

between baseline and NR supplementation at p value < 0.05

(Figure 2A; Table S4). Using gene annotation analysis (gene set



enrichment analysis [GSEA]) (Mootha et al., 2003; Subramanian

et al., 2005), we examined the enrichment of genes that belong

to known molecular pathways in our list of up- or downregulated

genes. Our results suggest that genes significantly downregu-

lated with NR supplementation were enriched in pathways

relating to energy metabolism, including those of glycolysis,

tricarboxylic acid (TCA) cycle, and mitochondria (Figure 2B;

Table S5). This is consistent with the recent discovery that

oral NR depresses mitochondrial membrane potential while

improving blood stem cell production in mice (Vannini et al.,

2019).

Pathways upregulated upon NR supplementation prominently

belonged to Gene Ontology categories such as cell adhesion,

actin cytoskeleton organization, and cell motility (Figure 2C).

This supports a previously identified role for the NAD+-gener-

ating enzyme NR kinase 2b (Nrk2b) in zebrafish skeletal muscle

cell adhesion (Goody et al., 2010).

We next examined all the genes that belonged to the glycolysis,

mitochondrial, and TCA cycle pathways and found that they were

predominantly downregulated following NR supplementation,

whereas10control genesetsof thesamesizeandexpression level

were not (Figures 2D–2F and S3A). Similarly, we found that the

genes belonging to theGeneOntology terms actin filament-based

process, cell motility, and biological cell adhesionweremainly up-

regulated upon NR supplementation (Figures S3B and S3C).

In agreement with the DGE analysis, quantitative real-time

PCR showed downregulation of selected genes involved in

energymetabolism (Figure 2G).We found no changes in the tran-

script levels of key genes involved in NAD+ metabolism, corrob-

orating the DGE analysis (Figure 2H). We also verified some of

the upregulated targets by qPCR (Figure S3D) and undertook

some immunoblotting validation (Figure S3D).

As it has previously been shown that NR increases glycolysis

in mouse cardiac cells (Diguet et al., 2018), and because our

data do not support an NR-mediated transcriptional upregula-

tion of glycolysis related genes, we examined protein expression

levels of glycolytic enzymes in our muscle biopsies and show

them to be unchanged after NR (Figure 2I).

Three Weeks of Oral NR Does Not Alter Skeletal Muscle
Mitochondrial Bioenergetics or Hand-Grip Strength
Several preclinical studies suggest that NR enhances mitochon-

drial energy programs in skeletal muscle (Cantó et al., 2012;

Frederick et al., 2016) through mechanisms that involve redox

and sirtuins activation. Therefore, we undertook a detailed

assessment of muscle mitochondrial respiration in biopsies after

NR supplementation using high-resolution respirometry, the

gold standard method for the ex vivo assessment of mitochon-

drial function. No differences were detected between the NR

and placebo groups in skeletal muscle complex I- and complex

II-mediated oxidative phosphorylation and maximal respiratory

capacity, with (Figure 3A) and without (Figure 3B) the prior addi-

tion of the fatty acid conjugate octanoyl-carnitine. In line with

this, the activity of citrate synthase, commonly used as a quan-

titative measure of mitochondrial content (Larsen et al., 2012)

(Figure 3C), and mitochondrial copy number (mtDNA) (Phielix

et al., 2008) (Figure 3D) were unchanged by NR supplementa-

tion. Similarly, levels of skeletal muscle biopsy mitochondrial
resident proteins, directly involved in the electron transport

chain, were unaltered upon NR supplementation (Figure 3E).

We then tested whether the NR-driven increase in the NAD+ me-

tabolome translates into higher sirtuin-mediated deacetylation

activity, and we performed western blotting to assess pan-acet-

ylation status, but again did not detect NR-mediated changes to

muscle protein acetylation (Figure 3F).

Data from rodents suggest that NAD+ supplementation can

improve the physiological function in skeletal muscle decline

(Cantó et al., 2012; Frederick et al., 2016; Mills et al., 2016);

thus, we used hand-grip strength as a surrogate marker for mus-

cle function, but one cannot expect hand-grip strength to

change after 3 weeks of NR supplementation and without mus-

cle training. Hand-grip strength correlates with leg strength and

is used for the diagnosis of sarcopenia and frailty, and it is a bet-

ter predictor for clinical outcomes than low muscle mass (Laure-

tani et al., 2003). A decline in hand-grip strength is observed after

the third decade of life (when median peak strength is 51 kg of

force in men) (Dodds et al., 2014), dropping to median

of 33.8 kg of force in our participants. A grip strength of <30 kg

of force in men is a diagnostic criterion for sarcopenia (Cruz-Jen-

toft et al., 2010, 2019). After 3 weeks of supplementation, we did

not observe any differences in the participants’ peak hand-grip

strengths (NR 32.5 kg versus placebo 34.7 kg; p = 0.96) or

body-weight-adjusted relative strength (NR 2.4 versus placebo

2.3; p = 0.96) between NR and the placebo (Figure S4).

Oral NR Does Not Alter Skeletal Muscle Blood Flow or
Substrate Utilization
Recent mouse data showed that NMN increases angiogenesis

and muscle blood flow (Das et al., 2018). Therefore, we used

venous occlusive plethysmography to test forearmmuscle blood

flow in the participants in a non-invasive manner (Greenfield

et al., 1963). At fasting, no NR-mediated differences were de-

tected in muscle blood. Following oral glucose load, muscle

blood flow gradually increases, but again with no differences be-

tween NR and the placebo (Figure 4A).

We then used the arteriovenous differencemethod (seeMethod

Details) tocomparesubstrateutilizationacross the forearmmuscle

(between arterial blood supplying the muscle and venous blood

drained from the muscle), with muscle blood flow taken into

consideration (Bickerton et al., 2007). No differences were de-

tected in O2 consumption (Figure 4B) and CO2 production (Fig-

ure 4C) between NR and the placebo at the fasting state and in

response to oral glucose. Muscle glucose uptake was increased

following oral glucose before a gradual decline. No changes

wereobserved inmuscleglucosehandlingwithorwithoutNR (Fig-

ure 4D). Oral glucose reduced lactate production from muscle,

again without a difference in response between NR and the

placebo (Figure 4E). These data suggest that the skeletal muscle

transcriptomic signature of downregulated mitochondrial and

glycolysis genes is undetectable when considered at a functional

level.

Oral NR Does Not Alter Systemic Cardiometabolic
Parameters
Several preclinical studies have described that NAD+ supple-

mentation promotes a resistance to weight gain, ameliorates
Cell Reports 28, 1717–1728, August 13, 2019 1721



Figure 3. Human Skeletal MuscleMitochon-

drial Bioenergetics Remain Unaltered with

NR Supplementation

(A) Mitochondrial respiration of permeabilized

muscle fibers upon the addition of complex I and

complex II substrates at baseline and after 3weeks

of supplementation of NR and the placebo. MG,

malate and glutamate; D, ADP; S, succinate; c,

cytochrome C; F, FCCP; Rot, rotenone. Data are

normalized to muscle fiber weight.

(B) Mitochondrial respiration as per (A), but with the

prior addition of the fatty acid conjugate octanoyl-

carnitine to malate (MOct).

(C) Citrate synthase (CS) activity in human skeletal

muscle at baseline and after NR and the placebo.

(D) Relative PCR expression of mitochondrial DNA

(mtDNA) to nuclear DNA (nDNA) at baseline and

after NR and the placebo, expressed as arbitrary

units.

(E) Western blot showing the expression of

selected mitochondrial proteins in skeletal muscle

lysates compared to b-actin as housekeeping

protein.

(F) Western blot showing the expression of acety-

lation proteins in skeletal muscle lysates compared

to b-actin as housekeeping protein.

Data are obtained from 12 participants at each

phase and wherever relevant are presented as

mean ± SEM. Significance was set at p < 0.05. The

absence of significance symbols indicates a lack

of statistical significance.
markers of cardiometabolic risk, and improves metabolic flexi-

bility (Yoshino et al., 2018). As NR increased the circulating levels

of the NAD+ metabolome, we reasoned that there was increased

NAD+ availability and turnover in central and peripheral tissues

and assessed for resultant cardiometabolic adaptations. Two

studies—one of 12 weeks of NR supplementation at 2 g/day in

subjects with obesity (Dollerup et al., 2018) and one of 6 weeks

of NR supplementation at 1 g/day in older adults (Martens

et al., 2018)—suggested potential benefits with respect to fatty

liver and blood pressure, respectively. Data for participants at

baseline and following NR or the placebo are reported in Table

S1. There were no changes in body weight, blood pressure, lipid

profile, fasting glucose and insulin (Table S1), and homeostatic

model assessment of insulin resistance (HOMA-IR) (Figure 5A).

A rebound increase in non-esterified fatty acids (NEFAs) has pre-

viously been associated with the nicotinic acid analog, acipimox

(van deWeijer et al., 2015); however, NR did not produce this ef-

fect in our trial (Figure 5B). Glucose handling was studied using

an oral glucose tolerance test, with no effect of NR measured

in glucose levels during the 2-h test (Figure 5C). Following the

oral glucose load and the consequent insulin stimulation, NEFA

levels were appropriately suppressed, and no difference in this

response was observed between NR and the placebo (Fig-

ure 5D). We also assessed metabolic flexibility using indirect
1722 Cell Reports 28, 1717–1728, August 13, 2019
calorimetry to derive respiratory ex-

change ratios (RERs; calculated as

VCO2 expired/VO2 consumed), reflecting

whole-body metabolic substrate use.
Measurements were initiated in the fasted state and monitored

during the response to the oral glucose load. The median fasting

RER was appropriate at 0.72 and 0.73 for the NR and placebo

periods, respectively (p = 0.68). In response to glucose, RER

values significantly increased, indicating adequate switching

from lipids toward carbohydrate utilization, with no differences

in response to 3 weeks of NR supplementation observed at 2 h

(RERs 0.83 and 0.84 for NR and the placebo, respectively)

(Figure 5E).

Oral NR Depresses Circulating Levels of Inflammatory
Cytokines
Chronic inflammation appears to be a consistent feature of ag-

ing, even in apparently healthy individuals (Singh and Newman,

2011), and may contribute to age-related disturbances in meta-

bolic homeostasis (Imai and Yoshino, 2013). We hypothesized

that NR supplementation would reduce the levels of circulating

inflammatory cytokines. We measured multiple inflammatory

cytokines (see Method Details), 10 of which were within the

assay detection range (Figure 6). NR significantly decreased

the levels of the interleukins IL-6 (Figure 6A), IL-5 (Figure 6B),

and IL-2 (Figure 6C) and tumor necrosis factor alpha (TNF-a)

(Figure 6D), compared to baseline. We detected a statistically

significant difference in the levels of IL-2 between baseline



Figure 4. Forearm Muscle Blood Flow and Substrate Utilization Are Unaffected by NR Supplementation

(A) Muscle blood flow using venous occlusive plethysmography at baseline and after the NR and placebo phases. The green dotted line represents when 75 g of

oral glucose load was taken.

(B andC)Muscle O2 consumption (B) andCO2 production (C) at baseline and after NR and the placebo. The green dotted line represents when 75 g of oral glucose

load was taken.

(D and E) Muscle glucose uptake (D) and lactate release (E) at baseline and after NR and the placebo. The green dotted line represents when 75 g of oral glucose

load was taken.

Data are obtained from 12 participants at each phase and presented as mean ± SEM. Significance was set at p < 0.05 using a paired t test. The absence of

significance symbols indicates a lack of statistical significance.
and the placebo (Figure 6C) and a lack of a difference in levels

of TNF-a between NR and the placebo, despite a difference

between NR and baseline (Figure 6D). This is seemingly due

to the NR carry-over effect beyond the washout period, as

evident by the period effect analysis (Figures S5A–S5D), con-

firming that the cohort randomized to the placebo first had no

difference in IL-2 between baseline and the placebo (Fig-

ure S5C), and there was a difference in TNF-a between NR

and the placebo (Figure S5D). No NR-mediated changes

were detected in the serum levels of IL-12 (Figure 6E), IL-8

(Figure 6F), interferon-gamma (IFN-g) (Figure 6G), monocyte

chemoattractant protein-1 (MCP-1) (Figure 6H), macrophage

inflammatory protein-1 beta (MIP-1B) (Figure 6I), and high-

sensitivity C-reactive protein (hsCRP) (Figure 6J). Thus, it will

be interesting to further investigate depressed IL-6, IL-5, IL-2,

and TNF-a as biomarkers and/or mediators of oral NR in rodent

models and humans.

DISCUSSION

The NAD+ precursor NR has been studied extensively in animal

and cell models. Its application in vivo has produced impressive

results ameliorating metabolic dysfunction and muscle decline

(Fang et al., 2017). No data exist on whether oral NR is available

to human skeletal muscle, and data on tissue NAD+ content dur-

ing aging are sparse, as are the consequences of NR supple-

mentation in aged humans.
Using a robust clinical trial design, we show that 21 days of NR

supplementation is safe and well tolerated in an aged male

cohort and leads to an augmented NAD+ metabolome in whole

blood, corroborating data recently reported by others (Martens

et al., 2018; Trammell et al., 2016a). The median BMI in this trial

is 26.6 kg/m2 (i.e., slightly overweight), but this is highly prevalent

in aged populations (Winter et al., 2014) and may not indicate an

unhealthy state (Porter Starr and Bales, 2015).

Experiments in genetic mouse models have shown that oral

NR is available to cardiac (Diguet et al., 2018) and skeletal (Fred-

erick et al., 2016) muscle, though it was also suggested that the

benefit of extrahepatic NAD+ from oral NR is mediated by circu-

lating NAM (Liu et al., 2018). Here, we show that oral NR

increased human skeletal muscle NAAD, which was previously

reported as a more sensitive marker of increased NAD+ meta-

bolism than NAD+ per se (Trammell et al., 2016a), as well as

MeNAM, Me-4-py, and Me-2-pywithout a rise in circulating

NAM. Previous preclinical studies have established that oral

NR is able to functionally restore muscle NAD+ despite a loss

of NAM salvage (Frederick et al., 2016; Diguet et al., 2018).

Although it is clear in rodent models that NR requires NR kinase

activity in muscle (Ratajczak et al., 2016; Fletcher et al., 2017),

further studies are required to understand NR dynamics in

human muscle cells and tissues. Increased circulating levels of

MeNAM and expression of its generating enzyme nicotin-

amide-N-methyltransferase (NNMT) have been associated with

insulin resistance and type 2 diabetes (Kannt et al., 2015;
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Figure 5. Systemic Readouts of Metabolism Are Unaltered with NR Supplementation

(A) HOMA-IR at baseline and after NR and the placebo.

(B) Fasting non-esterified fatty acid (NEFA) level at baseline and after NR and the placebo.

(C) Plasma glucose response in a glucose tolerance test at baseline and after NR and the placebo. The green dotted line representswhen 75 g of oral glucose load

was taken.

(D) Plasma NEFA response in a glucose tolerance test at baseline and after NR and the placebo. The green dotted line represents when 75 g of oral glucose load

was taken.

(E) Respiratory exchange ratio (RER) at baseline and after NR and the placebo. The green dotted line indicates when 75 g of oral glucose was taken.

Data are obtained from 12 participants at each phase and presented as mean ± SEM. Significance was set at p < 0.05. The absence of significance symbols

indicates a lack of statistical significance.
Liu et al., 2015). However, the NR-mediated abundance of

MeNAM did not alter glucose tolerance or substrate utilization

in our study.

The levels of elevated NAM excretory products in skeletal

muscle may be a result of pre-existing NAD+ sufficiency in this

aged cohort and may explain the lack of effect on mitochondrial,

physiological, and cardiometabolic parameters. A limited num-

ber of studies have reported minor age-related declines in

NAD+ in human tissues (Massudi et al., 2012; Chaleckis et al.,

2016; Zhou et al., 2016; Clement et al., 2018), but these data

are non-conclusive. It is likely that a ‘‘second hit’’ arises during

chronological aging that leads to tissue NAD+ decline and pre-

disposes to age-related disease and frailty. This ‘‘second hit’’

may be conditions of metabolic stresses such as physical

inactivity, chronic inflammation, or presence of a pre-existing

cardiometabolic disease (e.g., obesity), and it may implicate

downregulated NAMPT (Costford et al., 2010; Imai and Yoshino,

2013), depressed hepatic NADP(H) (Trammell et al., 2016b),

and/or activation of CD38 (Camacho-Pereira et al., 2016; Cova-

rrubias et al., 2019). Clearly, more human data are needed to

delineate the relationship between aging and NAD+ metabolism.

We note a median hand-grip strength in our participants of

33.8 kg of force, consistent with muscle aging for men in their
1724 Cell Reports 28, 1717–1728, August 13, 2019
eighth decade and likely associated impairment in mitochondrial

function. Our data suggest that 3 weeks of NR supplementation

without concomitant muscle training is insufficient for increased

strength.

NAD+ supplementation studies in rodents showed positive

effects on muscle structural proteins (Frederick et al., 2016;

Ryu et al., 2016; Zhang et al., 2016). It has been suggested

that for muscle cell membranes, there is a capacity for NAD+-

mediated ADP-ribosylation of integrin receptors that augment in-

tegrin and laminin binding and mobilize paxillin to bind adhesion

complexes (Goody et al., 2010; Goody and Henry, 2018). Differ-

ential gene expression analysis may support this link and may

highlight a potential role for NAD+ in the maintenance of skeletal

muscle architecture, although this NR-induced transcriptomic

signature appears to have no functional consequences at the

protein level after the 21-day supplementation period. This

observation may be important as we consider defective integrin

and laminin structures such as in the context of muscular

dystrophies (Mayer, 2003; McNally, 2012). Our data suggest a

downregulation of gene sets associated with glycolysis and

mitochondrial function, yet our measurements of mitochondrial

respiration, citrate synthase activity, and mitochondrial copy

number were unaltered. Again, expression levels of proteins



Figure 6. NR Supplementation Suppresses the Circulating Levels of Inflammatory Cytokines

(A–J) Levels of serum inflammatory cytokines at baseline and after each of the NR and placebo phases, including (A) interleukin 6 (IL-6), (B) interleukin 5 (IL-5), (C)

interleukin 2 (IL-2), (D) tumor necrosis factor alpha (TNF-a), (E) interleukin 12 (IL-12), (F) interleukin 8 (IL-8), (G) interferon-gamma (IFN-g), (H) monocyte che-

moattractant protein-1 (MCP-1), (I) macrophage inflammatory protein-1 beta (MIP-1B), and (J) high-sensitivity C-reactive protein (hsCRP). Data are obtained from

12 participants at each phase and presented asmean ±SEM. Significancewas set at p < 0.05 using paired t test. The absence of significance symbols indicates a

lack of statistical significance.
involved in glycolytic and mitochondrial metabolism were

unchanged with NR in this study. The downregulation of en-

ergy-generating processes may be reminiscent of mechanisms

associated with calorie restriction (Hagopian et al., 2003; Ingram

and Roth, 2011; Lin et al., 2015) or increased mitochondrial qual-

ity control, as has been observed in blood stem cells (Vannini

et al., 2019), or it may suggest that NR can ‘‘tune’’ the expression

of energy metabolism pathways to permit a more efficient and

potentially stress-resilient mitochondrial environment. It will be

interesting to further investigate those transcriptional changes

in cell culture and animal models.

Some preclinical studies have reported that NR reduced

macrophage infiltration in damaged muscle (Ryu et al., 2016;

Zhang et al., 2016) and attenuated plasma TNF-a in models of

fatty liver disease (Gariani et al., 2016). We show significant sup-

pression of a number of circulating inflammatory cytokines.

Studies are needed to explore the underlying mechanisms that

mediate these NR-mediated anti-inflammatory effects. Of note,

the expression of the NAD+-consuming enzyme CD38 increases
in inflammatory cells with inflammation (Amici et al., 2018), as

well as in the blood of aged humans (Polzonetti et al., 2012). Sup-

plementing NAD+ in this context may be amechanismmediating

the NR-induced anti-inflammatory effects. Though chronic

inflammation is a hallmark feature of aging (Singh and Newman,

2011), use of NRmay yet find utility in other chronic inflammatory

disorders, such as chronic obstructive pulmonary disease or

rheumatoid arthritis, and is worthy of further investigation.

Conclusions
We report that oral NR augments the aged human skeletal mus-

cle NAD+ metabolome while inducing a transcriptional signature

without affectingmitochondrial function or systemic cardiometa-

bolic parameters. The targeted NAD+ metabolome analysis sug-

gests pre-existing NAD+ sufficiency, despite hand-grip strength

consistent with muscle aging. Our data may suggest that chro-

nological age per se may not be a major factor in altering muscle

and brain NAD+ metabolism, unlike aged laboratory mice. A lim-

itation of this trial may be the number of participants or the
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duration of NR administration; however, the sample size was

sufficient to detect NR-driven changes in the NAD+metabolome,

muscle transcriptional signature, and inflammatory profile. The

transcriptional downregulation of mitochondrial gene sets also

argues against the lack of a bioenergetic NR effect being due

to the sample size. Further studies are needed to conceptualize

some of the NR-mediated changes in this experimental medicine

study.

Overall, these studies support that oral NR is available to

human skeletal muscle, and they reveal anti-inflammatory NR

properties, both of which may be beneficial in the context of ag-

ing, muscle, or inflammatory disease groups.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Custom made secondary antibodies (rabbit & mouse) MRC Phosphorylation and Ubiquitylation

unit, University of Dundee

N/A

a-Acetyl lysine Cytoskeleton Cat#AAC03

a-Alpha tubulin Santa-Cruz Cat#sc-8035

a-ANXA1 Sigma Cat#HPA011272

a-Beta actin Sigma Cat#A5441

a-OXPHOS Abcam Cat#ab110413

a-PGK1 Abcam Cat#ab199438

a-PGM1 Protein Tech Cat#15161-1-AP

a-PKM1 Protein Tech Cat#15821-1-AP

Chemicals, Peptides, and Recombinant Proteins
13C labeled nucleotides, nucleosides Trammell and Brenner, 2013 N/A
18O- nicotinamide Kolodziejska-Huben et al., 2002 N/A
18O nicotinamide riboside Yang et al., 2007 N/A

2-mercaptoethanol VWR Cat#441435C

Acetonitrile, Optima LC/MS Fisher Scientific Cat#A955-4

Adenosine 50-triphosphate disodium salt hydrate Sigma-Aldrich Cat#A2383

Adenosine 50diphosphate Sigma-Aldrich Cat#A5285

Adenosine diphosphate Sigma-Aldrich Cat#1905

Adenosine monophosphate Sigma-Aldrich Cat#A2252

ADPR Sigma-Aldrich Cat#A0752

Ammonium acetate Sigma-Aldrich Cat#238074

Antimycin A Sigma-Aldrich Cat#A8674

Benazmidine Millipore Cat#S7124222

Bovine serum albumin Sigma Cat#A2153

BSA, essentially fatty acid free Sigma-Aldrich Cat#A6003

Calcium carbonate Sigma-Aldrich Cat#C4830

Catalase from bovine liver Sigma-Aldrich Cat#C9322

Chemiluminescent HRP substrate Millipore Cat#WBKLS0500

Cytidine Sigma-Aldrich Cat#C122106

Cytochrome c Sigma-Aldrich Cat#C7752

d3,
18O methyl nicotinamide Trammell et al., 2016a N/A

d4-nicotinic acid CDN isotopes Cat#D-4368

Dithiotreitol Sigma-Aldrich Cat#D0632

DL-octanoyl carnitine-HCl Tocris bioscience Cat#605

Dnase I, Rnase-free Thermo Scientific Cat#EN0521

EDTA Sigma Cat#E1644

EGTA Sigma-Aldrich Cat#E4378

EGTA Sigma Cat#E4378

FCCP Sigma-Aldrich Cat#2920

Glucose reagent Werfen Ltd Cat#00018250740

Glutamic acid monosodium salt hydrate Sigma-Aldrich Cat#G1626

Glycerol reagent Randox Cat#GY105

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Glycine VWR Cat#0167

HEPES Fluka Cat#BP310-1

Imidazole Sigma-Aldrich Cat#56750

Inosine Sigma-Aldrich Cat#I4125

Inosine monophosphate Sigma-Aldrich Cat#57510

Lactate Reagent Randox Cat#LC2389

Lactobionic acid Sigma-Aldrich Cat#153516

LDS sample buffer Invitrogen Cat#NP0008

Magnesium chloride hexahydrate Sigma-Aldrich Cat#M2670

Malic acid Sigma-Aldrich Cat#M1000

MES Free Acid Hydrate Sigma-Aldrich Cat#M8250

N1-methyl-2-pyridone-5-carboxamide TLC Pharmaceutical Standards Cat#N-0621

N1-methyl-4-pyridone-3-carboxamide TLC Pharmaceutical Standards Cat#N-0627

NAAD Sigma-Aldrich Cat#N4256

NAD Sigma-Aldrich Cat#N0632

NADP Sigma-Aldrich Cat#N5755

NAR gift N/A

N-d3 methyl �4 pyridone-3-carboxamide TLC Pharmaceutical Standards Cat#N-0628

NEFA reagent Randox Cat#FA115

Nicotinamide Sigma-Aldrich Cat#72340

nicotinamide N-oxide Sigma-Aldrich Cat#N3258

Nicotinamide riboside ChromaDex Cat#ASB-00014315

Nicotinic acid Sigma-Aldrich Cat#N4126

N-methyl nicotinamide Cayman Chemical Cat#16604

NMN Sigma-Aldrich Cat#N3501

Phosphocreatine disodium salt hydrate Sigma-Aldrich Cat#P7936

Potassium phosphate monobasic Sigma-Aldrich Cat#P9791

Protease inhibitor cocktail Roche Cat#11873580001

Rotenone Sigma-Aldrich Cat#R8875

Saponin from Quillaja bark Sigma-Aldrich Cat#S7900

SDS ITW Cat#A1112

Skimmed milk powder Cell Signaling Cat#9999

Sodium chloride VWR Cat#27800.360

Sodium fluoride Alfa Aesar Cat#7681-49-4

Sodium orthovanodate Aldrich Cat#450243

Sodium pyrophosphate Sigma Cat#221368

Sodium succinate dibasic hexahydrate Sigma-Aldrich Cat#S2378

Sucrose Sigma-Aldrich Cat#S9378

Sucrose VWR Cat#0335

Taurine Sigma-Aldrich Cat#T8691

TRI Reagent Sigma-Aldrich Cat#T9414

Triglyceride reagent Werfen Ltd Cat#00018258740

Tris-base Fisher Cat#BP152

Tris-HCL Fisher Cat#BP153

Triton X-100 Sigma Cat#101634725

Tween-20 VWR Cat#0777

U-13C6 glucose Cambridge Isotope Cat#CLM-1396-pk

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Water, Optima LC/MS Fisher Scientific Cat#W6-4

b-Glycerophosphate Sigma Cat#G9422

Critical Commercial Assays

Citrate synthase assay kit Sigma-Aldrich Cat#CS0720

Coomassie protein assay reagent Thermo Fisher Cat#1856209

Insulin assay Mercodia Cat#10-1113-01

Deposited Data

Raw and processed data files for RNA sequencing This paper GEO: GSE133261

Oligonucleotides

Please refer to Table S6 This paper N/A

Other

Precast gels BioRad Cat#5671084

Thermo hypercarb 2.1 3 100 mm column, 3mm Fisher Cat#35003-102130
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gareth

Lavery (g.g.lavery@bham.ac.uk). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study conduct
The study was conducted between July 2016 and August 2017 at the National Institute for Health Research/Wellcome Trust Clinical

Research Facility at the Queen Elizabeth Hospital Birmingham, UK. The Solihull NRES Committee gave ethical approval (REC refer-

ence number 16/WM/0159). All participants provided written informed consent. The study was registered on www.clinicaltrials.gov

(Identifier: NCT02950441).The study was undertaken according to the principles of the Declaration of Helsinki and followed the

Guidelines for Good Clinical Practice.

Study population
Aged volunteers were recruited from the Birmingham 1000 Elders group (https://www.birmingham.ac.uk/research/activity/

mds/centres/healthy-ageing/elders.aspx). All participants fulfilled the inclusion criteria including: male sex, age 70 – 80 years, BMI

20 – 30 kg/m2, able to discontinue aspirin for 3 days prior to the muscle biopsy, and able to discontinue statins and vitamin D sup-

plements for a week before the study and for the duration of the study. Exclusion criteria included: serious active medical conditions

including inflammatory diseases ormalignancies, significant pastmedical history including diabetesmellitus, ischemic heart disease,

cerebrovascular disease, respiratory disease requiring medication, or epilepsy, blood pressure >160/100mmHg, or treatment with

oral anti-coagulants.

Study design
Single center, double blind, placebo-controlled, and crossover study. Aim was to obtain complete assessments from 12 aged indi-

viduals. Participants attended for a screening visit (visit 1) when an informed written consent was obtained after ensuring they fulfil all

inclusion criteria. For all subsequent study visits (2 to 5), the participants attended at 08:00 in a fasting state from the night before.

Regarding the post-interventions visits (3 and 5), the participants took the last NR/placebo dose 14 h prior to the assessments.

Randomization and blinding
Participants were allocated to either NR or placebo. A randomization list was held by the clinical trials pharmacist at the clinical

research facility. The study investigators, nurses, and participants were all blinded to the intervention allocation during the trial.

Intervention
NR was supplied as 250 mg capsules by the manufacturer (Niagen, ChromaDex, Irvine, CA). Participants received NR 500mg twice

daily or matched placebo for 21 days with 21 days washout period between the NR and placebo periods (Figure S1).
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Assessments
Assessments undertaken in each study visits are detailed in Figure S1.

METHOD DETAILS

Blood pressure
Blood pressure (Welch Allyn, USA) wasmeasured at the start of each visit after an overnight fast. At the trial visits, participants rested

for 15mins in a supine position before blood pressure was measured. An appropriately sized cuff was selected to encircle at least

80% of the arm and the same was used every visit for all participants, and on the same arm. Blood pressure was measured in trip-

licates and the mean was recorded.

Hand-held dynamometry
Peak absolute strength (kilograms) and relative handgrip strength (kilograms of force per kilogram of body weight) were measured in

triplicate bilaterally using a dynamometer (Takei Instruments, Japan). The highest measurement values were included for analysis.

Muscle biopsies
Resting vastus lateralis muscle biopsies were obtained from 12 men by a single investigator (Y.SE) using a percutaneous Bergstrom

technique as previously described (Bergstrom, 1975) under local anesthesia (1% lignocaine). The biopsy sample (100 – 150mg) was

immediately dried on clean filter paper and approximately 10mg of tissue was cut and placed on ice cold BIOPS buffer for high-res-

olution respirometry (see below). The rest of the muscle tissue was immediately snap frozen in liquid nitrogen and stored at �80�C
pending analysis.

Indirect calorimetry
Participants were allowed to rest for 60mins after insertion of the arterial and venous catheters. Then they lay supine in a comfortable

position while a transparent ventilated canopy was placed over their head. Plastic sheet attached to the hood was placed around the

subjects to form a seal. The room temperature, barometric pressure, and humidity were measured by a hygrometer (Oregon Scien-

tific). During the measurement period, participants remained supine, and breathed normally. Respiratory measurements, including

resting oxygen consumption (VO2) and carbon dioxide production (VCO2) and respiratory exchange ratio (VCO2/VO2), using the mix-

ing chamber mode of the metabolic cart (AEI MOXUS II Metabolic System). Measurements were collected at fasting and then every

30 min for 2 h following a 75 g oral glucose load. Measurements for each period lasted 15 mins so the first and last min could be

discarded, and the mean value for the middle 5 min was recorded.

Arterio-venous difference technique
An arterial catheter was inserted into a radial artery and a retrograde cannula was inserted into in a deep antecubital vein draining a

forearm muscle, on the opposite side of the arterial line. To prevent contamination of the muscle venous blood with the mixed blood

from the hand, awrist cuff was inflated to 200mmHg for 3mins before sampling. Blood samplingwas undertaken simultaneously from

the arterial and venous sites at fasting and every 20mins following oral glucose load for 120 min.

Venous occlusive plethysmography
Forearmmuscle blood flowwasmeasured by venous occlusive plethysmography (Hokanson, USA) (Wythe et al., 2015) as previously

described (Greenfield et al., 1963). Blood flow measurements were taken immediately after each blood sampling.

NAD+ METABOLOMICS

Muscle tissuewas pulverised and approximately 10mgwas used for each of the acid (A) and basic (B)metabolite extraction. For each

sample, internal standard mixtures for each of A and B were prepared. The extraction was undertaken using 0.2 mL of ice-cold LC-

MS/MS grade methanol and kept on ice before adding 0.3ml of internal standard made in LC-MS grade water. Samples were son-

icated in an acetone water bath (at�4�C) for 20 s, placed back on ice, and then incubated at 85�Cwith constant shaking at 1050 rpm

for 5 min. Samples were then placed on ice for 5 min and centrifuged (16.1k x g, 10 min, 4�C). The supernatant was transferred to

clean tubes and dried using a speed vacuum. The dried extract was re-suspended in 30 ml of either LC-MS grade water for acid

extract or 10 mM ammonium acetate for alkaline extract and centrifuged (16.1k x g, 3 min, 4�C). The supernatant was carefully trans-

ferred to aWaters Polypropylene 0.3 mL plastic screw- top vial. The pellet was then dried using a speed vacuum, pellet was weighed,

and later used to normalize data that were finally reported as pmol/mg.

Otherwise, muscle, blood, and urine metabolomics were undertaken as previously described (Trammell and Brenner, 2013;

Trammell et al., 2016a).
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Blood biochemical analysis
Blood was drawn from the arterial and venous catheters into heparinised blood tubes. Plasma was rapidly separated by centrifuga-

tion at 4�C and was then snap frozen. Plasma glucose, NEFA, and lactate concentrations were measured using commercially avail-

able kits on an ILAB 650 Clinical Chemistry Analyzer (Werfen Ltd, UK). Insulin was measured using commercially available assay as

per the manufacturer’s instructions (Mercodia, Sweden). Homeostasis model assessment of insulin resistance (HOMA-IR) was

calculated using the formula [fasting glucose (mmol/L) 3 fasting insulin (mU/L)/22.5].

Lipid profile, urea and electrolytes, and thyroid function tests were all measured on the Roche Modular Platforms (Roche,

Switzerland). Full blood count was measured on a Beckman Coulter DxH analyzer (USA).

High-resolution respirometry on permeabilized muscle fibers
Ex vivo mitochondrial function was determined by measuring oxygen consumption polarographically using a two-chamber

Oxygraph-2k (OROBOROS Instruments). Oxygen consumption reflects the first derivative of the oxygen concentration (nmol/ml)

in time in the respiration chambers and is termed oxygen flux [pmol/(s*mg)], corrected for wet weight muscle tissue (2–5 mg) intro-

duced into the chamber. Measurements were undertaken according to a previously described protocol (Pesta and Gnaiger, 2012).

Similar results were obtained if respiration rates were corrected for mitochondrial DNA (mtDNA) copy number or citrate synthase

activity.

Mitochondrial density assessments
For citrate synthase activity, 5mg of snap frozen human muscle was used and the measurement was undertaken as previously

described (Horscroft et al., 2015). Mitochondrial DNA (mtDNA) copy number was determined using quantitative real time PCR.

mtDNA copy number was calculated from the ratio of NADH dehydrogenase subunit 1 (ND1) to lipoprotein lipase (LPL) (mtDNA/

nuclear DNA) as previously described (Phielix et al., 2008).

RNA sequencing
RNA was extracted from frozen muscle tissue using Tri Reagent (Sigma-Aldrich) following manufacturer’s instructions. Sequencing

libraries were prepared using RNA (RIN > 7) with the LexogenQuantseq3 FWDkit. Libraries were sequenced usingHiSeq2000 across

4 flowcells generating 75bp long single ended reads (average read depth of 6-10M/sample, which is higher than the 4M reads / sam-

ple required for analysis for this type of library). All samples were prepared and sequenced as a single pool. Trimmomatic software

(v0.32) and bbduk.sh script (Bbmap suite) were used to trim the ILLUMINA adapters, polyA tails and low quality bases from reads.

Trimmed reads were then uniquely aligned to the human genome (hg38) using STAR with default settings (v2.5.2b) and the Gencode

(v28, Ensembl release 92) annotation as the reference for splice junctions. Mapped reads were quantified using HT-seq (v0.9.1) using

Gencode (v28) genes (-intersection-nonempty flag). Differential gene expression was obtained using DEseq2 with paired baseline

and treatment samples.

In this analysis we did not use a cutoff to remove lowly expressed genes. Inclusion of lowly expressed genes (at arbitrary cut-offs)

had little bearing on our results (97.8% of differentially expressed genes at p < 0.05 were identical between no cutoff, and a cut-off

of >3). Of note, volcano plot was drawn with a cut-off (> 3) in order to visualize the typical ‘‘V’’ shape using R. Differentially expressed

genes between baseline (control) and NR treated samples at p value = < 0.05 were annotated using Biological processes (BP) gene

sets with DAVID tool. We obtained similar results using gene annotation tool within Gene Set Enrichment Analysis (GSEA) suite (Sub-

ramanian et al., 2005; Liberzon et al., 2015) for gene sets from KEGG pathways and C5-Biological processes.

In addition, we have used GSEA analysis tool to interrogate specific gene sets against our pre-ranked expression data (Control

versus NR treatment). GSEA calculates an Enrichment Score (ES) by scanning a ranked-ordered list of genes (according to signifi-

cance of differential expression (-log10 p value), increasing a running-sum statistic when a gene is in the gene set and decreasing it

when it is not. The top of this list (red) contains genes upregulated upon NR+ treatment while the bottom of the list (blue) represents

downregulated genes. Each time a gene from the interrogated gene set (i.e., Glycolysis, mitochondria, TCA cycle) is found along the

list, a vertical black bar is plotted (hit). If the ‘‘hits’’ accumulate at the bottom of the list, then this gene set is enriched in upregulated

genes (and vice versa). If interrogated genes are distributed homogenously across the rank ordered list of genes, then that gene set is

not enriched in any of the gene expression profiles (i.e., control gene sets of similar expression levels to interrogated gene sets). GSEA

was used in pre-ranked mode with parameters -norm meandiv -nperm 1000 -scoring_scheme weighted. 10 gene sets of equal size

and similar expression levels to the interrogated gene sets were generated using a custom pipeline in R (available upon request). We

have interrogated the following gene sets: GO0048870; cell motility, GO0030029; actin filament based process, GO0022610; Biolog-

ical cell adhesion, (also GO0007155 cell adhesion with similar results), M15112: Wong Mitochondria gene module, M3985: KEGG

citrate cycle TCA cycle, merge of M15109: BIOCARTA Glycolysis pathway and M5113: REACTOME glycolysis.

Protein immunoblotting
Muscle biopsies were homogenized in ice-cold sucrose lysis buffer (50 mM Tris/HCl (pH 7.5), 250 mM Sucrose, 10mM Na-b-Glyc-

erophosphate, 5mMNa-Pyrophosphate, 1mMBenazmidine, 1mMEDTA, 1mMEGTA, 1%Triton X-100, 1mMNa3VO4, 50mMNaF,

0.1% b-Mercaptoethanol, supplemented with protease inhibitor cocktail). Samples (40-100mg of protein extract) were loaded into

4%–15% Tris/Glycine precast gels (BioRad) prior to electrophoresis. Proteins were transferred onto PVDF membranes (Millipore)
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for 1h at 100V. A 5% skimmed milk solution made up with Tris-buffered saline Tween-20 (TBS-T, 0.137M NaCl, 0.02M Tris-base

7.5pH, 0.1% Tween-20) was used to block each membrane for 1h before being incubated overnight at 4�C with appropriate primary

antibodies. Membranes were washed in TBS-T three times prior to incubation in horse radish peroxidase-conjugated secondary

antibody at room temperature for 1h. Membranes were then washed in TBS-T prior to antibody detection via enhanced chemilumi-

nescence horseradish peroxidase substrate detection kit (Millipore). Images were undertaken using a G:Box Chemi-XR5 (Syngene).

Inflammatory cytokines
We performed a multiplex cytokine bead assay using the Bio-Plex Pro Human Cytkine 17-plex panel analyzed with a flow-cytometry

based Luminex 200 reader. The levels of IL-1b, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, IFN-g,

MCP-1, MIP-1b, and TNF-a were measured on the participants’ sera as per the manufacturer’s instructions. Only IL-2, IL-5, IL-6,

IL-8, IL-12, IFN-g, TNF-a, MCP-1, and MIP-1b were within detection range. High sensitive CRP was measured using CRPHS:

ACN 217 on COBAS 6000 analyzer (Roche, USA). All measurements were undertaken in duplicates.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample size for this experimental medicine study was decided upon based on previous experience from studies using the same

methodological design, whereby the proposed sample size was sufficient to detect significant differences at the 5% level. The anal-

ysis was based on data from all participants who were randomized, and completed all the study visits and assessments. Outcome

data were reported as mean ± SEM (or median and quartiles where appropriate). In the NR supplementation study, comparisons of

participants between placebo and NR supplementation phases were undertaken using paired t tests. In addition, further data anal-

ysis taking into account the period effect was undertaken, by grouping the participants into those who were randomized to NR first

and second. This is to look for carryover effect across all analyses. Wherever relevant, area under the curve was calculated using the

trapezoid method. Data were analyzed using IBM SPSS Statistics version 22 and GraphPad Prism version 7.0.

DATA AND CODE AVAILABILITY

Raw read files and processed data files for RNA sequencing can be found at the NCBI Gene Expression Omnibus (GEO) database

(GSE133261). Scripts and other bioinformatics pipelines used to analyze RNA sequencing data can be found at https://github.com/

iakerman/Quantseq.
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