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Human immune and gut microbial parameters
associated with inter-individual variations in
COVID-19 mRNA vaccine-induced immunity
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COVID-19 mRNA vaccines induce protective adaptive immunity against SARS-CoV-2 in most

individuals, but there is wide variation in levels of vaccine-induced antibody and T-cell

responses. However, the mechanisms underlying this inter-individual variation remain

unclear. Here, using a systems biology approach based on multi-omics analyses of human

blood and stool samples, we identified several factors that are associated with COVID-19

vaccine-induced adaptive immune responses. BNT162b2-induced T cell response is positively

associated with late monocyte responses and inversely associated with baseline mRNA

expression of activation protein 1 (AP-1) transcription factors. Interestingly, the gut microbial

fucose/rhamnose degradation pathway is positively correlated with mRNA expression of AP-

1, as well as a gene encoding an enzyme producing prostaglandin E2 (PGE2), which promotes

AP-1 expression, and inversely correlated with BNT162b2-induced T-cell responses. These

results suggest that baseline AP-1 expression, which is affected by commensal microbial

activity, is a negative correlate of BNT162b2-induced T-cell responses.
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Vaccines containing mRNA encoding SARS-CoV-2 spike
antigen, such as Pfizer BNT162b2, can effectively protect
people against COVID-191–6. Innate immune sensing of

BNT162b2 mRNA by cytosolic RNA sensors immediately after
vaccination is required for subsequent activation of spike-specific
T-cell and antibody responses7. A second dose of BNT162b is
sufficient to induce detectable spike-specific antibody and T-cell
responses in most individuals, but levels of adaptive immune
responses vary widely among individuals8,9. Although inter-
individual variation in BNT162b2-induced adaptive immunity is
associated with several parameters, such as SARS-CoV-2 infec-
tion history, age, sex, and ethnicity9–11, the cause of this variation
remains largely unknown.

Recent studies focused on systems biological understanding of
human vaccine responses provide important insight into factors
associated with inter-individual variation in vaccine-induced
adaptive immunity12–14. Immune states represented by the
composition of immune cells and gene expression profiles in
individuals are highly variable, plausibly due to genetic diversity
and environmental factors such as gut microbial flora15–17.
Through comprehensive analysis of immune states of blood cells
at baseline and early vaccine responses, specific immune cell
populations and transcripts have been identified as correlates of
antibody or T-cell responses induced by vaccination against
influenza virus, hepatitis B virus, and malaria18–22. Moreover,
other studies reveal that gut microbes are also associated with
vaccine-induced adaptive immunity23–25. Importantly, these
factors can be predictors of vaccine responses and may be
potential therapeutic targets to improve vaccine responses26,27.
However, the variability of immune states and gut microbes that
is associated with COVID-19 mRNA vaccine responses remains
unclear. In this study, using a systems biology approach, we
demonstrate that BNT162b2-induced human adaptive immune
responses are associated with specific immune and gut microbial
parameters.

Results
Study design and cohort characteristics for vaccine-induced
adaptive immune responses. In this study, we used a systems
biology approach based on multi-omics analyses of human blood
and stool samples. 96 healthy subjects participated in this study
(Supplementary Fig. 1a), and data from 95 participants who
received two doses of BNT162b2 at a 3- to 4-week interval were
analyzed (data from one participant who was not able to receive
the second dose in a timely manner due to severe side effects from
the first dose were excluded from the analysis). BNT162b2
induces a remarkable increase in expression of genes related to
innate immunity on 1 day after the first dose and 1–7 days after
the second dose28. Accordingly, we collected blood samples at
multiple time points (Fig. 1a) to analyze baseline responses (T1:
before vaccination), innate immune responses (T2: day 2 ± 1 after
the first dose; T3: day 2 ± 1 after the second dose; T4: day 8 ± 2
after the second dose), and long-term adaptive immune responses
(T5: day 41 ± 3 after the second dose). In addition, to analyze the
gut microbiome, we collected stool samples from all subjects once
during the participation period (Fig. 1a).

To evaluate the level of vaccine-induced adaptive immunity, we
measured the SARS-CoV-2 spike-specific antibody response in
plasma and the T-cell response in peripheral blood mononuclear
cells (PBMCs), by enzyme-linked immunosorbent assay (ELISA)
and enzyme-linked immunospot (ELISpot) assay, respectively. As
previously reported29, we also detected an increase in spike-specific
antibody and T-cell responses at T5 in all subjects, but with
remarkable individual differences (Supplementary Fig. 2a, b). Nine
subjects were seropositive for SARS-CoV-2 spike and nucleocapsid

proteins at baseline (Supplementary Fig. 2c). To remove the effect
of previous SARS-CoV-2 infection30, we focused on 86 subjects
who were seronegative for SARS-CoV-2 spike at baseline in
subsequent analyses. Consistent with previous reports31–33, we
observed gender-associated differences in antibody and T-cell
responses (Supplementary Fig. 2d, e) and an age-related decline of
vaccine-induced antibody responses, but not T-cell responses
(Supplementary Fig. 2f, g). There was no detectable correlation
between vaccine-induced antibody and T-cell responses (Supple-
mentary Fig. 2h). After vaccination, T cell responses against
common cold human coronaviruses (HCoVs), which show high
identity to SARS-CoV-2 in amino acid sequences of spike proteins,
increased and were correlated with T-cell responses against SARS-
CoV-2 (Supplementary Fig. 3a–c), indicating that BNT162b2 can
induce cross-reactive T cells to HCoVs as reported34,35.

We constructed profiles of immune cell populations and mRNA
expression in PBMCs and profiles of gut microbiome using
cytometry by time of flight (CyTOF), bulk RNA sequencing, and
16 S ribosomal RNA gene sequencing analyses (Fig. 1a). To identify
factors associated with vaccine-induced adaptive immune
responses, we used two different approaches in data analysis
(Fig. 1b). In the first approach, 86 subjects seronegative for SARS-
CoV-2 spike at baseline (hereafter referred to as the entire cohort)
were randomly divided into discovery and validation cohorts
(n= 43 each), and associations identified in the discovery cohort
were subjected to be confirmed in the validation cohort
(Supplementary Fig. 1b). In the second approach, data from the
entire cohort (n= 86) were used to identify associations in order to
increase statistical power. To remove the effect of age and sex, we
performed partial correlation analyses. Through these analyses, we
sought to identify immune cell populations, transcripts, and
commensal microbial taxa and functions associated with vaccine-
induced antibody and T-cell responses.

Immune cell populations associated with BNT162b2-induced
adaptive immune responses. Using CyTOF data of the discovery
cohort, we analyzed correlations between the frequency of 17
major immune cell populations (Supplementary Fig. 4a) and
vaccine-induced adaptive immunity (antibody or T-cell responses
at T5). This revealed that the frequency of monocytes at T5 was
higher in high-T-cell responders than in low-T-cell responders
(Supplementary Fig. 4b), which was confirmed in analysis of the
validation cohort (Fig. 2a). In analysis of the entire cohort, we
found that T-cell responses were not only positively correlated
with the frequency of monocytes, but also positively and inversely
correlated with the frequency of regulatory T (Treg) cells and
several T cell subsets, respectively (Fig. 2b and Supplementary
Fig. 4c, d). Time course analysis using data of high- and low-T-
cell responders (top 20 and bottom 20 subjects in T-cell responses
at T5) in the entire cohort showed vaccine-induced increases and
decreases in the frequency of monocytes in high-T-cell respon-
ders (only at T5) and in low-T-cell responders (from T2 to T5),
respectively (Fig. 2c and Supplementary Fig. 4e). Thus, the fre-
quency of monocytes, which changes in the vaccine response, is a
positive correlate of vaccine-induced T-cell responses.

Transcripts associated with BNT162b2-induced adaptive
immune responses. To identify genes and pathways associated
with BNT162b2-induced adaptive immunity, we next analyzed
bulk RNA-seq data of PBMCs at T1 and T4. Of the 86 subjects
who were seronegative for SARS-CoV-2 spike at baseline,
sequence data from 80 (at T1) and 78 (at T4) subjects passed
quality control. We observed that vaccination altered expression
of 2296 genes, including genes related to plasma cells and B cells
(Supplementary Fig. 5a, b). Using the discovery cohort, we
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performed gene set enrichment analysis (GSEA) to identify bio-
logical processes associated with vaccine-induced adaptive
immunity. This revealed that a blood transcriptional module
(BTM)36 related to the activation protein 1 (AP-1) transcription
network at T1, but not at T4, was negatively associated with T-cell
responses (Supplementary Fig. 5c), which was confirmed in
analysis of the validation cohort (Fig. 3a). Additionally, GSEA
using the entire cohort data showed that a BTM related to the
AP-1 transcription network at T1 was positively and negatively
associated with antibody responses and T-cell responses,
respectively (Fig. 3b).

One gene (at T4) and 130 genes (53 genes at T1, 77 genes at T4)
were differentially expressed (log2 FC > 0.5, adjusted P < 0.05) in
high- vs low-antibody responders and in high- vs low-T-cell
responders in the entire cohort, respectively (Fig. 3c and
Supplementary Fig. 5d). Notably, AP-1 transcription factors, such
as FOS, FOSB, and JUN were highly expressed in low-T-cell
responders at T1, but not at T4 (Fig. 3c). Gene regulatory network
analysis of differentially expressed genes (DEGs) between high- and
low-T-cell responders identified FOS, JUN, and monocyte enhancer
factor 2D (MEF2D), which were highly expressed in low-T-cell

responders, as potential regulators for many DEGs (Fig. 3d).
Baseline expression of FOS and MEF2D, but not JUN, was inversely
correlated with vaccine-induced T-cell responses (Fig. 3e). Since AP-
1 pathway was associated with T cell responses in GSEA, we assessed
whether this is the case for other AP-1 family genes and found that
expression of activating transcription factor 3 (ATF3) and FOSB was
also inversely correlated with T-cell responses (Fig. 3f). An
additional RNA-seq analysis of high and low T-cell responders
(n= 19 each) in the entire cohort at T5 showed that expression of
FOSB, JUND, and FOS like 2 (FOSL2), but not FOS and ATF3, was
significantly higher in low-T-cell responders (Supplementary Fig. 5e).
Consistent with the correlation between the monocyte frequency
and vaccine-induced T cell responses at T5 (Fig. 2a, b), a BTM
related to monocyte biology was positively associated with T-cell
responses (Supplementary Fig. 5f). Taken together, we identified
baseline expression of a subset of AP-1 genes FOS, FOSB, and ATF3
as negative correlates of vaccine-induced T-cell responses.

Baseline FOS expression is associated with ex vivo responses of
PBMCs to BNT162b2 mRNA. Next, we sought to investigate
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Fig. 1 Study design. a Schematic diagram showing blood and stool sample collection and analysis performed in this study. Samples from 95 subjects who
received two doses of BNT162b2 at 3–4-week intervals were analyzed. b Schematic diagram showing data analysis approaches. The entire cohort
(86 subjects who were seronegative for SARS-CoV-2 spike at baseline) were divided into the discovery and validation cohorts (n= 43 each). The
discovery cohort or entire cohort was used to identify factors associated with COVID-19 antibody or T-cell responses, and factors identified in the
discovery cohort were subjected to confirmation in the validation cohort.
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whether transcriptomic signatures related to innate immune
responses are associated with BNT162b2-induced adaptive
immunity. To this end, we performed bulk RNA-seq analysis of
PBMCs stimulated with BNT162b2 mRNA for 6 h ex vivo, because
relatively large time lags in our blood sampling did not likely allow
us to evaluate dynamic gene expression in BNT162b2-induced
innate immunity. BNT162b2 mRNA stimulation upregulated
genes related to type I interferon (IFN) responses (Supplementary
Fig. 6a, b). GSEA in the entire cohort revealed that a BTM related
to type I IFN responses was negatively and positively associated
with antibody responses (Fig. 4a) and T-cell responses (Fig. 4b),
respectively. Consistent with this, interferon beta 1 (IFNB1)
expression was correlated with vaccine-induced T cell responses
(Fig. 4c) and was significantly higher in high-T-cell responders
than low responders, which was confirmed by qPCR analysis
(Fig. 4d). Moreover, IFNB1 expression was inversely correlated
with baseline expression of FOS, FOSB, and JUN (Fig. 4e). Analysis
of PBMCs stimulated with BNT162b2 mRNA encapsulated with
lipid nanoparticles also showed higher IFNB1 expression in high-
T-cell responders (Supplementary Fig. 6c).

To further investigate how baseline expression of AP-1
transcription factors is associated with early vaccine response, we
performed single-cell RNA-seq (scRNA-seq) analysis of PBMCs of
subjects who exhibited high or low FOS expression in the bulk RNA-
seq analysis (high- and low-FOS subjects, n= 4 each) in the absence
or presence of ex vivo stimulation with BNT162b2 mRNA. This
experimental setting allowed us to evaluate the association between
expression of FOS and other genes at baseline and in early innate
immune response (6 and 16 h after BNT162b2 mRNA stimulation)
in specific cell populations (Fig. 5a). Unsupervised clustering
identified nine major immune cell populations whose frequencies
were comparable between high- and low-FOS subjects (Supplemen-
tary Fig. 7a). BNT162b2 mRNA stimulation upregulated genes
related to RIG-I-like receptor signaling and type-I IFN response,
particularly in the monocyte population (Supplementary Fig. 7b).

We found that FOS was expressed all over the immune cell
populations that we detected in unsupervised clustering analysis,

with the highest expression in CD14+ monocytes, in the absence
of BNT162b2 mRNA stimulation (Fig. 5b). As expected, FOS
expression was significantly higher in high-FOS than low-FOS
subjects (Fig. 5b). However, FOS expression was reduced in
response to BNT162b2 mRNA stimulation in most PBMC
subpopulations (Fig. 5b and Supplementary Fig. 7c). To
investigate genes associated with baseline FOS expression in each
cluster, we next performed GSEA on a ranked gene list based on
changes in expression between high- and low-FOS subjects. This
showed that GO terms related to baseline immunity, such as
chemotaxis in CD14+ monocytes, the tumor necrosis factor
(TNF) signaling pathway in CD4+ T cells, and the Toll-like
receptor signaling pathway in CD8+ T cells, were associated with
high-FOS subjects at baseline (Fig. 5c and Supplementary Fig. 7d).
In contrast, upon BNT162b2 mRNA stimulation, GO terms
related to T cell activation, such as response to IFN-γ in CD4+

T cells and responses to virus in CD8+ T cells, were associated
with low-FOS subjects (Fig. 5c and Supplementary Fig. 7d). Taken
together, these results indicate that FOS expression is positively
associated with expression of genes related to baseline immune
cell activity, but it is negatively associated with that related to type
I IFN responses and T cell activation upon BNT162b2 mRNA
stimulation ex vivo.

Gut microbes associated with BNT162b2-induced adaptive
immune responses. To assess the association between com-
mensal gut microbes and vaccine-induced adaptive immunity, we
next analyzed 16 S ribosomal RNA gene sequencing data. There
was no difference in Shannon’s diversity index in high- vs low-
antibody responders and in high- vs low-T-cell responders in the
entire cohort (Supplementary Fig. 8a). Linear discriminant ana-
lysis effect size (LEfSe) analysis in the discovery cohort identified
several taxa associated with antibody or T-cell responses, but
none of them were confirmed in the validation cohort. However,
LEfSe analysis in the entire cohort identified 23 taxa and 11 taxa
that were differentially enriched in high- vs low-antibody
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the entire cohort (n= 86). TEMRA, terminally differentiated effector memory; NK, natural killer. Partial correlation analyses with adjustments for age and
sex were performed with Spearman’s correlation tests with Benjamini–Hochberg FDR correction (*P < 0.05, **P < 0.01, ***P < 0.001). c Kinetics of the
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responders and in high- vs low-T-cell responders, respectively
(Fig. 6a, b). There were no significant correlations between these
taxa and vaccine-induced antibody or T cell responses in analysis
with adjustments for age, sex, and stool sampling timing (Sup-
plementary Fig. 8b, c).

We next searched for functions of gut microbiota that are
associated with vaccine-induced adaptive immunity using a
metagenome prediction tool, phylogenetic investigation of
communities by reconstruction of unobserved states (PICRUSt2).
In the analysis of the entire cohort, but not the discovery cohort,
we found that the fucose/rhamnose degradation pathway of gut
microbiota was inversely correlated with vaccine-induced T-cell
responses (Supplementary Fig. 9a). Partial correlation analysis
confirmed that the correlation between the fucose/rhamnose

degradation pathway and T-cell responses was independent of
age, sex, and fecal sampling timing (Fig. 6c). The fucose/
rhamnose degradation pathway converts fucose to lactaldehyde,
which in turn is converted to (S)-1,2-propanediol or pyruvate
(Fig. 6d). Among enzymes involved in this pathway, abundances
of genes encoding L-fucose mutarotase and L-fuculokinase were
significantly higher in microbiomes of low-T-cell responders
(Fig. 6e and Supplementary Fig. 9b). Furthermore, we found that
Blautia, which was enriched in low-T-cell responders (Fig. 6b),
was a dominant taxon that encodes L-fucose mutarotase
(Supplementary Fig. 9c, d).

Analysis of recently reported metagenome sequence data on
gut microbiota before and after COVID-19 vaccination25 showed
that there was no significant change in the abundance of genes
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based on the Spearman’s correlation coefficient between RNA expression and vaccine-induced T-cell or antibody responses in the entire cohort (n= 86).
Immune-related pathways are shown in red. c Scatterplots showing DEGs between high- (n= 18 at T1, n= 19 at T4) and low- (n= 19 at T1, n= 18 at T4)
T-cell responders in the entire cohort. DEGs: differentially expressed genes (log2 FC > 0.5, adjusted P < 0.05). Blue and red dots indicate genes that were
highly expressed in the sample groups shown on the X axis and Y axis, respectively. N.S. not significant. d Gene regulatory network analysis of DEGs
between high- and low-T-cell responders in the entire cohort. e Scatterplots showing correlations between vaccine-induced T-cell responses and
expression of FOS and MEF2D. SFU, spot-forming units. Spearman’s rho coefficient and P values are indicated in the plots. f Heat map showing correlations
between vaccine-induced T-cell responses and expression of AP-1 genes (n= 86). a, b, e, f Partial correlation analyses with adjustments for age and sex
were performed with Spearman’s correlation tests with Benjamini–Hochberg FDR correction.
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related to fucose/rhamnose degradation 1 month after vaccina-
tion (Supplementary Fig. 9e), suggesting that the activity of this
metabolic pathway is largely not influenced by COVID-19 mRNA
vaccination. Consistent with this, there was no detectable
correlation between stool sampling timing and fucose/rhamnose
degradation (Supplementary Fig. 9f). To evaluate the gut
microbial fucose degradation activity, we anaerobically incubated
stool slurry in the presence of fucose in vitro for 20 h and
measured fucose levels in the culture media. The results
confirmed that samples predicted by PICRUSt2 to have high
fucose-rhamnose degrading activity reduced fucose more than
those predicted to have low activity (Fig. 6f). Taken together,
these data indicate that the gut microbial fucose/rhamnose
degradation pathway is a negative correlate of vaccine-induced T-
cell responses.

The gut microbial fucose/rhamnose degradation pathway is
associated with AP-1 expression. Finally, we investigated whe-
ther the gut microbial fucose/rhamnose degradation pathway is
associated with baseline expression of transcription factors that
we identified as correlates of vaccine-induced T-cell responses.
This showed that the gut microbial fucose/rhamnose degradation
pathway was positively correlated with baseline FOS, FOSB, and
ATF3 expression in PBMCs (Fig. 7a and Supplementary
Fig. 10a–c). Fucose/rhamnose degradation generates (S)-1,2-
propanediol and pyruvate, which in turn leads to generation of
short-chain fatty acids (SCFAs) (Fig. 7b). SCFAs derived from
intestinal bacteria modulate host immune responses by inducing

colonic Treg cell differentiation37–39. Furthermore, SCFAs induce
production of prostaglandin E2 (PGE2), which upregulates AP-1
expression40. We found that abundance of genes related to
fucose/rhamnose degradation was correlated with expression of
prostaglandin-endoperoxide synthase 2 (PTGS2, also known as
cyclooxygenase 2 [COX2]), which encodes an enzyme catalyzing
production of PGE2, but not with the frequency of Tregs at
T1(Fig. 7c and Supplementary Fig. 10d). PTGS2 expression was
also positively correlated with expression of AP-1 factors, FOS,
FOSB, and ATF3, and inversely correlated with vaccine-induced T
cell responses (Fig. 7d, e). These results support the hypothesis
that gut microbial fucose/rhamnose degradation may upregulate
PTGS2/PGE2 expression in PBMCs probably through SCFAs,
thereby promoting AP-1 expression. Indeed, treatment with
SCFAs, but not (S)-1,2-propanediol, significantly increased
expression of PTGS2 in PBMCs (Fig. 7f). Furthermore, PGE2
treatment enhanced expression of FOS in PBMCs (Fig. 7g). These
results suggest a potential functional link from the gut microbial
fucose/rhamnose degradation pathway to AP-1 gene expression
in PBMCs.

Discussion
In this study, we identified various human immune cell popula-
tions and transcripts as well as gut bacterial taxa and functional
pathways that are associated with BNT162b2-induced vaccine
responses, using a systems biology approach. Notably, the base-
line transcription module related to the AP-1 transcription factor
network was positively associated with BNT162b2-induced
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antibody response and negatively associated with T-cell respon-
ses. Consistent with this, baseline expression of AP-1 genes (FOS,
FOSB, and ATF3) was inversely correlated with T-cell responses.
Furthermore, the gut microbial fucose/rhamnose degradation
pathway was inversely correlated with T-cell responses. These
findings advance our understanding of the contribution of
immune and microbial factors to inter-individual variations in
vaccine-induced adaptive immunity.

This study provides insight into the role of AP-1 genes in
vaccine-induced T-cell responses. We observed that AP-1
expression in PBMCs rapidly decreased upon ex vivo stimula-
tion with BNT162b2 mRNA, which is consistent with a recent
report that expression of AP-1 genes such as FOS and ATF3 was
diminished in CD14+ monocytes by BNT162b2 vaccination28.
Interestingly, the AS3-adjuvanted H5N1 pre-pandemic influenza
vaccine also induces a decrease of AP-1 gene expression in
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monocytes through epigenetic silencing, which is maintained for
at least 28 days41. Vaccine-induced alteration of AP-1 expression
levels might explain why we detected association between
vaccine-induced T-cell responses and expression of FOS and
ATF3 at baseline (T1), but not after vaccination (T4 or T5). AP-1
expression levels during vaccine response are associated with
vaccine-induced cytokine expression41, but how the difference in

baseline AP-1 expression affects vaccine response remains
unknown. We found that FOS expression, which was inversely
correlated with vaccine-induced T-cell responses, was positively
associated with transcription modules related to baseline activity
of CD14+ monocytes and T cells. Furthermore, baseline FOS
expression was negatively associated with transcription modules
related to type I IFN responses and T cell activation upon
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BNT162b2 mRNA stimulation ex vivo. These data suggest that
baseline expression of FOS and other AP-1 factors in T cells and/
or FOS-dependent control of baseline immune cell activity may
inhibit type I IFN responses and T-cell activation induced by
mRNA vaccines.

Our results suggest a functional link between the gut microbial
fucose/rhamnose degradation pathway and the host immune
system. We found that fucose/rhamnose degradation and AP-1
expression were positively correlated with PTGS2 expression and
inversely correlated with vaccine-induced T cell responses. The
fucose/rhamnose degradation pathway can promote generation of
SCFAs by several mechanisms, including cross-feeding of (S)-1,2-
propanediol, a metabolic end-product of this pathway, between
gut commensal bacteria resulting in production of propionate42.
Our data suggest that SCFAs upregulate PGE2 production
through upregulation of PTGS2 expression, which in turn upre-
gulates FOS expression in PBMCs. SCFAs promote mucosal Treg
generation37–39. However, we did not observe an association
between fucose/rhamnose degradation and the frequency of Tregs
in PBMCs. Future studies will need to further explore the clinical
significance and molecular mechanisms of interactions between
the fucose/rhamnose pathway and vaccine-induced T-cell
responses.

Our CyTOF analysis revealed a significant difference in the
frequency of monocytes on Day 41 after the second dose between
low- and high-T-cell responders. We observed a decrease of
monocytes for at least two months after BNT162b2 vaccination in
low-T-cell responders, but not in high responders. Conversely,
there was an increase of monocytes between Days 8 and 41 after
the second dose only in high-T-cell responders. These observa-
tions indicate remarkable heterogeneity in monocyte response
induced by BNT162b2 vaccination. Infection and vaccination can
affect monocyte development, homeostasis, and migration,
thereby altering the frequency of monocytes in the blood43,44.
Interestingly, vaccination with BCG, AS3-adjuvanted H5N1 pre-
pandemic influenza (H5N1+AS03) vaccine, or HIV vaccine
induces innate memory monocytes that provide protection
against non-related41,45 and related viruses46. Epigenetic changes
induced by H5N1+AS03 are maintained in monocytes for at
least 6 months, suggesting long-lasting trained immunity41.
Furthermore, BCG vaccination enhances myelopoiesis, while
decreasing lymphopoiesis in the bone marrow through persistent
epigenetic modification of hematopoietic stem cells, which is
plausibly important for innate immune memory of short-lived
monocytes47. These epigenetic mechanisms in monocytes or
hematopoietic stem cells might be involved in changes in the
frequency of monocytes that we observed at T5 after BNT162b2-
induced inflammatory responses.

This study successfully identified multiple correlates of
BNT162b2-induced adaptive immune responses, but there are
several limitations that should be noted. First, the associations
identified only in the entire cohort analysis, such as the one
related to gut microbial fucose/rhamnose degradation, have not
been validated in other cohorts. Second, the relatively small
sample size and the ethnic and geographic bias of participants in
this study may have limited identification of correlates of adaptive
immune responses. This may be one of the reasons why several
enterobacterial taxa correlated with BNT162b2-induced antibody
responses were identified in another study25, but not in our study.
Whether our findings are relevant to other ethnic groups is an
important issue for future studies. Third, time lags in blood
sampling over several days may have impeded identification of
correlates of adaptive immunity that change dynamically in short
time windows, such as genes induced by innate immunity. This
issue was partly addressed by our RNA-seq analysis of PBMCs
stimulated with BNT162b2 mRNA ex vivo, but the in vivo

relevance of findings from these analyses remains unknown.
Fourth, we used the level of IFN-γ-secreting T cells as an indi-
cator of T-cell responses for simple and accurate measurement by
ELISpot assay, but analysis of CD4+ and CD8+ effector T cell
subsets may be more informative. Fifth, high-throughput,
scRNA-seq analysis and higher-resolution cell phenotyping by
CyTOF will be required for a more comprehensive understanding
of individual variation in vaccine-induced adaptive immunity.

In summary, we discovered several immune and microbial
parameters at baseline and in the vaccine response that are
associated with BNT162b2-induced antibody and T-cell respon-
ses, which provide insight into mechanisms of inter-individual
variation in adaptive immunity. Our data suggest a key role of
baseline AP-1 expression and the gut microbial fucose/rhamnose
degradation pathway in inter-individual variation in mRNA
vaccine-induced T-cell responses. Future studies should address
the potential of these factors as baseline predictors of vaccine
outcome and as therapeutic targets to improve vaccine responses.

Methods
Subjects. The study was approved by the Okinawa Institute of Science and
Technology, Graduate University (OIST) human subjects ethics committee
(application HSR-2021–001). Ninety-six Japanese healthy volunteers (42 men and
53 women; average age, 52.4 ± 14.9 years; age range: 20–81 years) were recruited in
Okinawa, Japan, between May 2021 and August 2021. All participants provided
informed written consent. In total, 25 mL of peripheral blood was collected at each
sampling. Stool samples were also collected from all participants once during the
participation period. To identify parameters associated with COVID-19 vaccine
responses, data from entire cohort (subjects seronegative for COVID-19 spike
protein, n= 86) were analyzed. The entire cohort was randomly divided into the
discovery and validation cohorts (n= 43 each) using the sample function in
R software.

PBMCs and plasma collection. Using Leucosep tubes pre-filled with Ficoll-Paque
Plus (Greiner; 163288), PBMCs and plasma were separated from blood samples
collected in heparin-coated tubes (TERUMO; VP-H100K) as previously
described48. Briefly, 25 mL of blood and 12 mL of AIM-V medium (Thermo;
12055091) were mixed, added to Leucosep tubes, and centrifuged at 1000 × g at
room temperature for 10 min. The upper yellowish plasma solution was collected
and stored at –20 °C. The white layer containing PBMCs were washed twice with
22 mL of AIM-V medium by 7 min centrifugation, once at 600 × g and a second
time at 400×g, and then cells were resuspended in 500 μL of CTL test medium
(Cellular Technology Limited (CTL); CTLT-010). Fresh PBMCs were used for IFN-
γ ELISpot assays, and the remaining PBMCs were stored in liquid nitrogen until
use for other assays.

SARS-CoV-2 antibody ELISA. Anti-SARS-CoV-2 spike immunoglobulin G (IgG)
ELISA assays were performed as previously described49,50 with minor modifica-
tions. Briefly, 96-well plates were coated with 2-4 µg/mL HexaPro51 spike protein
overnight at 4 °C. The concentration was adjusted as necessary to optimize positive
control signal reproducibility across protein purification batches. After blocking
with 200 µL of PBST plus 3% milk, prepared serial dilutions of sera in PBST plus
1% milk were transferred to ELISA plates. Antibody incubation steps were carried
out in an incubator at 20 °C. All other steps were carried out as described
previously49. For data analysis, the endpoint titer was calculated using Prism 7
(GraphPad), and the background value was set at an OD492 of 0.2 arbitrary units
(AU) based on previously reported data52 and our data on a 10-specimen panel of
negative controls. Accordingly, an ELISA reactivity greater than 0.2 AU was con-
sidered seropositive for SARS-CoV-2 spike.

Subjects seropositive for SARS-CoV-2 spike were subjected to SARS-CoV-2 N
antibody test using anti-SARSCoV-2 N protein Human IgG ELISA Kit
(ProteinTech) according to the manufacturer’s instructions. Briefly, serum samples
were diluted (1:100) and added to N-protein-coated plates for 30 min. After four
washes, horseradish peroxidase-conjugated anti-human IgG antibodies were added
and incubated for 30 min at room temperature. After four more washes,
tetramethylbenzidine substrate was added and incubated for 10 min before adding
the stop solution. Plates were read at 450 nm and 630 nm using SpectraMax iD3
(Molecular Devices).

IFN-γ ELISpot assay. Peptide pools for spike proteins from SARS-CoV-2 (JPT;
PM-WCPV-S-1), HCoV-OC43 (GSC; PR30011), HCoV-NL63 (JER; PM-NL63-S-
1), HCoV-229E (GSC; RP30010), and HCoV-HKU1 (JER; PM-HKU1-S-1) dis-
solved in dimethyl sulfoxide (DMSO) (500 μg/mL) were used for cell stimulation.
Each peptide pool consisted of 15-mer peptides overlapping by 11 amino acids,
covering the entire spike proteins from SARS-CoV-2 (UniProt ID: P0DTC2),
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HCoV-229E (UniProt ID: P15423), HCoV-NL63 (UniProt ID: Q6Q1S2), HCoV-
HKU1 (UniProt ID: Q5MQD0), and HCoV-OC43 (UniProt ID: P36334). IFN-γ
ELISpot assays were performed using Human IFN-γ Single-Color Enzymatic
ELISpot kits (CTL; hIFNgp-2 M), according to the manufacturer’s instructions.
Briefly, freshly isolated PBMCs (2.5 × 105 cells per well) were stimulated with
1 mg/mL peptide solutions for 18 h. Negative controls (cells treated with equimolar
amounts of DMSO) and positive controls (cells treated with 20 ng/mL phorbol 12-
myristate 13-acetate (PMA) and 100 ng/mL ionomycin) were included in each
analysis. After washing the plates, detection reagents included in the kits were
added to wells. Spots were counted using a CTL ImmunoSpot S6 Analyzer (Cellular
Technology Limited). To count antigen-specific spots, the number of background
spots in a negative control well were subtracted from the number of spots in wells
treated with peptide pools.

CyTOF immunophenotyping. Cryopreserved PBMCs were quickly thawed in a
water bath at 37 °C and centrifuged for 5 min at 440×g. Cells were resuspended in
TexMACS Medium (Miltenyi Biotec), treated with DNase I (100 U/mL) in the
presence of 5 mM MgCl2 for 15 min, centrifuged and resuspended in staining
buffer, followed by barcoding with different combinations of Maxpar human anti-
CD45 antibodies labeled with 106 Cd, 110 Cd, 111 Cd, 112 Cd, 113 Cd, or 114 Cd
(Fluidigm). 18-20 barcoded PBMC samples were pooled (1 × 105 cells/sample) and
immunostained using a Maxpar Direct Immune Profiling Assay kit (Fluidigm,
S00124) according to the manufacturer’s protocol. This kit contained Live/dead
intercalator-103Rh and the following 30 marker antibodies: CD45-89Y, CD196/
CCR6-141Pr, CD123-143Nd, CD19-144Nd, CD4-145Nd, CD8a-146Nd, CD11c-
147Sm, CD16-148Nd, CD45RO-149Sm, CD45RA-150Nd, CD161-151Eu, CD194/
CCR4-152Sm, CD25-153Eu, CD27-154Sm, CD57-155Gd, CD183/CXCR3-156Gd,
CD185/CXCR5-158Gd, CD28- 160Gd, CD38-161Dy, CD56/NCAM- 163Dy,
TCRgd-164Dy, CD294-166Er, CD197/CCR7-167Er, CD14-168Er, CD3-170Er,
CD20-171Yb, CD66b-172Yb, HLA-DR-173Yb, IgD-174Yb, and CD127-176Yb.
PBMC samples were washed three times with Cell Acquisition Solution (CAS) or
CAS plus buffer (Fluidigm) and resuspended in the same buffer containing a 1/10
dilution of EQ beads (Fluidigm). Samples were analyzed (an average of 5 × 104

events/sample) with a Helios mass cytometer system (Fluidigm).

CyTOF data analysis. Flow cytometry standard (FCS) files were normalized using
EQ beads and concatenated. Then files were de-barcoded using the barcode key file
(Key_Cell-ID_20-Plex_Pd.csv) in the Fluidigm acquisition software (v. 6.7.1014).
Clean-up gates for live single cells and elimination of non-cell signals were
manually conducted using the web-plat software, Cytobank (v.9.1). To correct
batch effects across CyTOF runs, signal intensities were normalized using
cyCombine (v.0.1.8)53. Data were analyzed using a previously described R-based
pipeline54. In brief, data were imported and transformed for analysis using the
read.flowSet function from the flowCore (v.2.6.0) package55 and the prepData with
option (cofactor= 5) function from the CATALYST (v.3.16; https://github.com/
HelenaLC/CATALYST) package, respectively. Clustering was based on the fastPG
(v.0.0.8)56 algorithm with default parameters. These clusters were visualized using
t-distributed stochastic neighbor embedding (t-SNE) and subsequently annotated
based on protein markers expression.

Bulk-RNA seq. Total RNA was isolated from PBMCs using Isospin cell and tissue
RNA kit (Nippon Gene) or an RNAdvance v2 kit (Beckman Coulter) according to
manufacturer instructions and quantified with an RNA HS Assay Kit (Thermo
Fisher) and a Qubit Flex Fluorometer (Thermo Fisher). For transcriptome analysis,
10 ng of RNA were used for library preparation with a QuantSeq 3′ mRNA-Seq
Library Prep Kit FWD for Illumina (Lexogen) according to the manufacturer’s
protocol for low-input RNA samples. To generate single-nucleotide polymorphism
(SNP) calls for several donors whose samples were analyzed by scRNA-seq, cDNA
libraries were prepared from 500 ng of RNA using a Collibri Stranded RNA Library
prep Kit (Thermo Fisher) according to the manufacturer’s protocol for degraded
RNA samples. Libraries were quantified with a Qubit 1x dsDNA HS Assay Kit
(Thermo Fisher) and a Qubit Flex Fluorometer (Thermo Fisher), and quality was
assessed using D1000 ScreenTape and High Sensitivity D5000 ScreenTape with a
Tapestation 2200 (Agilent). Pooled libraries were sequenced on a Novaseq 6000
instrument (Illumina) with 1 × 100-bp reads for transcriptome analysis and
2 × 150-bp reads for generation of SNP calls at the Sequencing Section at OIST.

Bulk RNA-seq data processing. To evaluate data quality, we applied FastQC
(v.0.11.9) (www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were fur-
ther processed to remove adaptor and low-quality sequences using Trimmomatic57

(v.0.39) software with the options (SLIDINGWINDOW:4:20 LEADING:20
TRAILING:20 MINLEN:20 HEADCROP:12). To align reads to the GRCh38
reference genome (Homo_sapiens.GRCh38.dna.primary_assembly.fa file down-
loaded from Ensembl), we used HISAT258 (v.2.2). We counted the number of reads
overlapping the genes in GENCODE (v.30) reference transcriptome annotations
using featureCounts from Subread59 (v.2.0.1) with flags (-s 1 -t gene). Samples with
fewer than 300,000 total reads were excluded from the analysis. To detect differ-
entially expressed genes between the high- and low- Ab or T-cell responders, we
first filtered transcripts with an average read count of less than 5 and analyzed

statistical significance with the Wald test using DESeq260 (v.1.34.0). Gene set
enrichment analysis based on blood transcriptional module (BTM), Kyoto Ency-
clopedia of Genes and Genomes (KEGG), and Gene Ontology collection (GO) was
performed using the clusterProfiler61 package (v.4.2.2). To predict regulators that
explain the observed differential transcriptional program between the two groups,
we used iRegulon62 (v.1.3) through the Cytoscape (v.3.9.1) visualization tool.
Analysis was performed on the putative regulatory region of 20 kb centered around
the transcription start site using default settings.

SNP calling. Sequencing reads were adaptor- and quality-trimmed and then
aligned to the human genome using the Hisat2 aligner. SNP calls were generated
using a previously published protocol63. In brief, we used SAMtools64 (v.1.12) to
remove duplicates (command markdup). Then, we applied the BEDtools65

(v.2.26.0) intersect to identify and remove SNPs in imprinted genes (http://www.
geneimprint.org/ accessed: 3 January 2022) and SNPs in repeats (RepeatMasker
annotation downloaded from the UCSC Genome Browser). Genotypes were
obtained with SAMtools mpileup with options (-A -q 4 -t AD, DP) and BCFtools66

(v.1.11-1) call (with options -m --O b -f GQ), using uniquely mapped reads. We
used VCFtools67 (v.0.1.16-2) to select SNPs with a depth ≥10 with options
(-minDP 10) and a genotype quality ≥20 with options (-minGQ 20).

Ex vivo PBMC stimulation with BNT162b2 mRNA. The BNT162b2 cDNA
sequence, including 5′ and 3′ untranslated regions68, was synthesized by integrated
DNA technology (IDT) and cloned into pCDNA3.1 (Thermo Fisher). Using PCR-
amplified BNT162b2 cDNA with an upstream T7 promoter as a template, in vitro
transcription of BNT162b2 mRNA was performed with a HiScribe T7 ARCA
mRNA Kit with tailing (NEB) with 2.5 mM N1-Methylpseudouridine-5′-tripho-
sphate nucleoside analog (TriLink BioTechnologies) instead of unmodified UTP.
BNT162b2 mRNA was purified using a Monarch RNA cleanup kit (NEB) and
dissolved in nuclease-free water.

PBMCs were seeded into a 96-well plate (106 cells/well), and stimulated by
transfection with BNT162b2 mRNA (200 ng/well) using Lipofectamine
MessengerMAX (Thermo Fisher) according to the manufacturer’s instructions.
Cells were harvested 6 or 16 h after mRNA transfection. In some experiments,
PBMCs were stimulated with BNT162b2 mRNA encapsulated with lipid
nanoparticles (LNP). To prepare LNP-BNT162b2 mRNA, BNT162b2 mRNA in
citrate buffer (5 mM sodium citrate, 5 mM citric acid, and 150 mM sodium
chloride, pH 4.5) was mixed with 2.3 mM ALC-0315 (Echelon Biosciences),
0.8 mM ALC-0159 (Echelon Biosciences), 0.5 mM DSPC (Echelon Biosciences),
and 0.8 mM cholesterol (Echelon Biosciences) in ethanol using a syringe pump
with LNPSC-SHMGHFL (NT Science). LNP-BNT162b2 mRNA was purified using
an ultra-centrifuge filter (Merck Millipore, UFC 810024) and resuspended in PBS
(20 ng/μL). PBMCs were seeded into a 96-well plate (106 cells/well) and stimulated
with BNT162b2 mRNA/LNP (200 ng/well).

scRNA-seq. PBMCs unstimulated or stimulated with BNT162b2 mRNA for 6 h or
16 h were used for analysis. Cells from eight subjects were pooled in equal numbers
and resuspended in ice-cold PBS with 0.04% BSA at a final concentration of 1000
cells/μL. Single-cell suspensions (about 20,000 cells) were then loaded on the 10X
Genomics Chromium Controller (Supplementary Table 1). Libraries were gener-
ated using a Chromium Next GEM Single Cell 5′ v2 (Dual Index) Reagent Kit
according to the manufacturer’s instructions. A Quantitative PCR Bio-Rad T100
Thermal Cycler (Biorad) was used for a reverse transcription reaction. All libraries
were quality controlled using a Tapestation (Agilent) and quantified using a Qubit
Fluorometr (Thermo Fisher). Libraries were pooled and sequenced on an Illumina
NovaSeq platform (Illumina) using the following sequencing parameters: read1-26-
cycle, i7-10, i5-10, read2-90 with a sequencing target of 20,000 reads per cell RNA
library.

scRNA-seq data analysis. The CellRanger Single-Cell Software Suite (v.6.0.0; 10x
Genomics) was used to perform barcode processing and transcript counting after
alignment to the GRCh38 reference genome with default parameters. To match
single cells in the 10x RNAseq data to each donor and identify doublets, we used
the software package demuxlet (v.2.0.1)69, which uses variable SNPs between
pooled individuals. To further analyze scRNA-seq data, we used the Seurat
(v.4.1.0)70 R package. Cells expressing >5% mitochondrial gene counts or
expressing fewer than 500 genes were discarded using the subset function. Then,
the NormalizeData and FindVariableFeatures functions were applied to each
dataset before FindIntegrationAnchors, IntegrateData and ScaleData were called to
combine and scale the data. Unsupervised clustering was applied in each dataset as
follows: (i) The top variant genes selected by FindVariableFeatures were used as
input for principal components analysis (PCA) to reflect major biological variation
in the data. (ii) The top 15 principal components were used for t-SNE dimensional
reduction with the RunTSNE function and unsupervised clustering. Specifically,
the FindClusters function was used to cluster cells. (iii) After cell clusters were
determined, marker genes for each cluster were identified by the FindAllMarkers
function with default parameters. The AddModuleScore function was used to
calculate the module score in each cell. Plots of expression of specific transcripts
were created using the FeaturePlot function. To find differentially expressed genes
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between high- and low-FOS groups, we used the FindMarkers function with the
MAST algorithm71. Gene set enrichment analysis based on BTM, KEGG, and GO
was performed using the clusterProfiler R package.

16 S rRNA gene sequencing. Fecal samples were stored at –80 °C until use. After
thawing, approximately 50 mg of each stool sample was transferred into a 2-mL
tube containing 0.1 mm zirconia/silica beads (BioSpec Products) and 3.0 mm zir-
conia beads (Biomedical Sciences). Stool samples were disrupted using a Tissue-
Lyser II (Qiagen) for 10 min at 30 Hz after adding the Inhibit EX buffer from the
QIAamp Fast DNA Stool Mini Kit (Qiagen), and genomic DNA was extracted
using the QIAamp Fast DNA Stool Mini Kit in accordance with the manufacturer’s
instructions. To amplify16S rRNA V3 and V4 regions, PCR was performed using
Kapa Hifi Hotstart Ready Mix (KAPA Biosystems) with an amplicon PCR primer
set (forward: 5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT
ACG GGN GGC WGC AG-3′, reverse: 5′-GTC TCG TGG GCT CGG AGA TGT
GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3′). The PCR
condition was: 95 °C for 3 min, followed by 25 cycles of 95 °C for 30 s, 55 °C for
30 s, and 72 °C for 30 s, and then 72 °C for 5 min. PCR products purified with
AMpure XP beads (Beckman) were further amplified by another PCR using Kapa
Hifi Hotstart Ready Mix with Nextra XT Index Primers from Nextra XT Index Kit
(Illumina). PCR conditions were: 95 °C for 3 min, followed by eight cycles of 95 °C
for 30 s, 55 °C for 30 s, and 72 °C for 30 s, and then 72 °C for 5 min. Library DNA
was purified with AMpure XP beads and quantified using a Qubit 1x dsDNA HS
Assay Kit. Samples were sequenced on an Illumina Miseq with 2x300bp reads at
the Sequencing Section at OIST.

16 S rRNA gene sequencing data analysis. FASTQ files were analyzed using the
QIIME2 pipeline72 (QIIME2 version 2020.2). After conversion to the qza format,
sequence data were demultiplexed and summarized using QIIME2 paired-end-
demux. Then, sequences were trimmed and denoised with the dada2 plugin for
QIIME2. Taxonomy was assigned using a naive Bayes-fitted classifier trained on
the SILVA_132 reference database (SSURef_NR99_132_SILVA) with the feature-
classifier plugin for QIIME2. The phylogenetic tree for diversity analysis was
reconstructed using QIIME2 align-to-tree-mafft-fasttree. Diversity analysis was
performed with QIIME2 core-metrics-phylogenetic. PICRUSt2 (v.2.4.2)73 was used
to determine predicted functions of bacterial communities. Comparisons of bac-
terial taxon abundance were performed with LEfSe Galaxy instance74 using default
parameters. In LEfSe analysis, reads assigned to the mitochondrial and chloroplast
genomes were filtered out. In addition, taxa detected in less than 10% of partici-
pants (n= 86) or in less than 10% of a subset of participants (n= 40, top 20 and
bottom 20 antibody or T cell responders) were excluded from the analysis.

Analysis of fucose degradation activity using stool culture. To evaluate fucose
degradation activity, stool samples were cultured as previously reported with some
modifications75. Briefly, fecal samples stored at –80 °C were thawed on ice and
resuspended in phosphate buffer (0.1 M, pH 7.0) at 32% (wt/vol) to prepare the
inoculum. Fermentation medium (14 mg/mL peptone, 0.3 mg/mL cysteine, 0.3 mg/
mL sodium sulfide, and 1.2 μg/mL Resazurin) was supplemented with or without
50 mg/mL fucose (Sigma Aldrich), and was deoxygenated in a jar containing
AnaeroPack as an oxygen absorber (A-03, Mitsubishi Gas Chemical), for 24 h
before use. The inoculum (50 μL) and the fermentation medium (180 μL) were
mixed in a 14 mL tube and incubated at 37 °C with shaking under anaerobic
conditions in a jar containing AnaeroPack for 20 h. The reaction was stopped by
incubating the culture tube on ice for 1 h, and fucose concentration was measured
using L-FUCOSE Kit (Megazyme) in accordance with the manufacturer’s
instructions.

Treatment of PBMCs with SCFA and PGE2. PBMCs were seeded into a 96-well
plate (106 cells/well), and treated with SCFAs (mixture of 0.6 mM acetate [Sigma-
Aldrich], 0.2 mM propionate [Sigma-Aldrich], and 0.2 mM butyrate [Sigma-
Aldrich]), 10 mM (S)-1, 2-Propanediol (Tokyo Chemical Industry), or 10 μM
PGE2 (Nacalai tesque).

RNA isolation and qPCR. cDNA was synthesized using ReverTra Ace qPCR RT
Kit (Toyobo) using 200 ng of total RNA in a 10-μL volume. cDNA samples were
diluted fourfold by adding 30 μL sterile nuclease-free water and 10 μL of cDNA
were used for PCR reactions. PCR was carried out using KAPA SYBR FAST qPCR
Kit Master Mix (KAPA BIOSYSTEMS, KK4602) and primer sets (Supplementary
Table 2) on a StepOnePlus Real-Time PCR System (Applied Biosystems).

Statistics and reproducibility. Statistical details for each experiment are included
in the figure legends. Wilcoxon rank-sum tests and Wilcoxon signed-rank tests
were performed using R (v.4.1.2) or GraphPad Prism (v.9.4.0). Correlation and
partial correlation analyses were performed using Spearman’s correlation tests in
the stats R package (v.4.1.2). To remove the effects of age, gender, and fecal
sampling timing in partial correlation analysis, we calculated Spearman’s correla-
tion coefficient using residuals from linear regression of ranked variables. P values

were corrected using Benjamini–Hochberg false discovery rate (FDR) for multiple
comparisons.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data has been provided as Supplementary Data 1. Sequencing data that support
the finding of this study have been deposited to DDBJ database under accession
numbers PRJDB14078 (for bulk RNA-seq and 16S rRNA gene sequencing)
and PRJDB14085 (for scRNA-seq). Metagenome sequence data on gut microbiota before
and after COVID-19 vaccination is available in BioProject (PRJEB48269). Any other
relevant data are available from the corresponding author upon request.

Code availability
Source codes used for this study are available upon request.
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