Article

Gut microbial carbohydrate metabolism
contributes toinsulinresistance

6,789
'

https://doi.org/10.1038/s41586-023-06466-x
Received: 25 March 2022

Accepted: 20 July 2023

Published online: 30 August 2023

Tadashi Takeuchi', Tetsuya Kubota">**°*, Yumiko Nakanishi'?, Hiroshi Tsugawa
Wataru Suda™, Andrew Tae-Jun Kwon", Junshi Yazaki', Kazutaka lkeda™?, Shino Nemoto',
Yoshiki Mochizuki’, Toshimori Kitami, Katsuyuki Yugi'*'®", Yoshiko Mizuno'®"°,
Nobutake Yamamichi?®, Tsutomu Yamazaki?', Iseki Takamoto®?2, Naoto Kubota®,

Takashi Kadowaki®*?, Erik Arner", Piero Carninci**?°, Osamu Ohara'*'®, Makoto Arita’3?5%,
Masahira Hattori'®, Shigeo Koyasu?® & Hiroshi Ohno'*2*

Open access

)
Checkfor updates Insulinresistanceis the primary pathophysiology underlying metabolic syndrome

and type 2 diabetes'* Previous metagenomic studies have described the
characteristics of gut microbiota and their roles in metabolizing major nutrientsin
insulin resistance®”. In particular, carbohydrate metabolism of commensals has been
proposed to contribute up to 10% of the host’s overall energy extraction', thereby
playingarole in the pathogenesis of obesity and prediabetes®*®. Nevertheless, the
underlying mechanism remains unclear. Here we investigate this relationship using
acomprehensive multi-omics strategy in humans. We combine unbiased faecal
metabolomics with metagenomics, host metabolomics and transcriptomics datato
profile theinvolvement of the microbiome ininsulin resistance. These data reveal that
faecal carbohydrates, particularly host-accessible monosaccharides, are increased in
individuals with insulin resistance and are associated with microbial carbohydrate
metabolisms and host inflammatory cytokines. We identify gut bacteria associated
withinsulin resistance and insulin sensitivity that show a distinct pattern of
carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated
bacteria ameliorate host phenotypes of insulin resistance in amouse model. Our
study, which provides acomprehensive view of the host-microorganism relationships
ininsulin resistance, reveals the impact of carbohydrate metabolism by microbiota,
suggesting a potential therapeutic target for ameliorating insulin resistance.

We analysed 306 individuals (71% male) aged from 20 to 75 years
(median age, 61years), who were recruited during their annual health
check-ups (Extended DataFig.1a). Individuals diagnosed with diabetes
were excluded to avoid any long-lasting effects of hyperglycaemia®®.
Consequently, our study included relatively healthy individuals com-
pared with most of the previous metagenomic studies of diabetes
and obesity>*"'%; the median (interquartile range (IQR)) body mass
index (BMI) and glycated haemoglobin (HbAlc) were 24.9 kg m™
(22.2-27.1 kg m™) and 5.8% (5.5-6.1%), respectively (Supplementary

Table1). The main clinical phenotype analysed in this study was insulin
resistance (IR), whichwe defined asahomeostatic model assessment of
IR (HOMA-IR) score of at least 2.5 (ref. 13). We also analysed the associa-
tionsbetween faecal metabolites and metabolic syndrome (MetS), an
IR-related pathology. The clinical characteristics of IR and MetS largely
overlapped except for blood pressure and sex ratio, for which there
was no difference between individuals with IR versus normal insulin
sensitivity (IS) (Supplementary Table 1). Untargeted metabolomics
analysis using two mass spectrometry (MS)-based analytical platforms
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Fig.1|Faecal carbohydrate metabolites are distinctly alteredinIR. a, Left,
the AUC of random forest classifiers was used to predict IRbased on genus-
level 16S (n =282), metagenome at the KEGG orthologue (KO) level (n =266),
faecal metabolome and metagenome (KEGG orthologue) + faecal metabolome
(n=266)data. The number of featured markers selected from the datasets
increases alongthexaxis. Right, the box plots show the AUC obtained by selected
features.Each dotrepresentsan AUC value of arandom-forest classifier using
agivennumber of selected features as predictor variables. b, CAGs of faecal
hydrophilic metabolites (hydroCAG, top) and lipid metabolites (lipidCAG,
bottom), and clinical phenotypes and markers (n =282). The two-column heat
map ontheleftrepresents the associations with the main clinical phenotypes
(IRand MetS) analysed using rank-based linear regression, whereas the main
heat map shows the partial Spearman’s correlations (pSC) adjusted by age
andsex with representative metabolic markers. Only the CAGs with adjusted

identified195and 100 annotated faecal and plasma hydrophilic metab-
olites,and 2,654 and 635 annotated faecal and plasmalipid metabolites,
respectively (Extended Data Fig.1a). To identify the overall difference
in microbial functions, faecal metabolites and predicted genes were
summarized into co-abundance groups (CAGs) and KEGG categories,
respectively (Extended Data Fig. 1b). Transcriptomic information of
peripheral blood mononuclear cells (PBMCs) was obtained using the
cap analysis of gene expression (CAGE) method™, which can measure
gene expression at the transcription-start-site resolution.

To examine how omics data of faecal samples can predict IR, we first
compared the areaunder the curve (AUC) of receiver operating charac-
teristic (ROC) curves on the basis of random-forest classifiers. Predictor
variables for the models were selected using the minimum-redundancy
maximume-relevance algorithm® from the faecal 16S, metabolome,
metagenome and their merged datasets (Supplementary Table 2).
We found that the selected features of faecal metabolomic data gen-
erally outperformed those of 16S and metagenomics in predicting IR
(Fig.1a), suggesting that faecal metabolomics could be used to study
IR pathogenesis.

Faecal carbohydrates are increased in IR

We next searched for the associations between clinical phenotypes and
faecal metabolite CAGs (Fig.1b and Supplementary Tables 3-8). Major
confounding factors, namely sex and age, were adjusted throughout the
correlation and regression analyses with clinical markers. Among the
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e hydroCAG 12: monosaccharide
~ hydroCAG 15: sugar alcohol, amino sugar
§ hydroCAG 5: monosaccharide

hydroCAG 8: SCFA

hydroCAG 18: miscellaneous

lipidCAG 58: sphingoid base
7 lipidCAG 88: MG
— lipidCAG 75: CAR
—lipidCAG 52/92: CAR/BA

|- lipidCAG 78/35/18: LPS,
LPG/LPE, LPE O/Cer

§ lipidCAG 60 LPC O
lipidCAG 73: LPC

§ lipidCAG 11: DGDG
lipidCAG 48: LPE-N, MGDG
— lipidCAG 107: miscellaneous
0.4 M Pos., P,y < 0.05

B Neg., P, < 0.05
0.2

ALT
TG
hsCRP
IL-6
MCP1

TNF
FBG
Resistin

HbA1c
SBP
LDL-C

IL-10
BMI
Adipsin

v-GTP
HDL-C
Adiponectin

HOMA-IR
Serpin E1

P(P,4) <0.05are coloured. The category names for CAGs were determined on
the basis of the most abundant metabolitesin the CAGs. Further details are
providedin Supplementary Tables 3-8. FBG, fasting blood glucose; neg.,
negative; pos., positive. The lipid abbreviations are defined in Supplementary
Table 27.c, pSC between HOMA-IR and faecal levels of monosaccharides. The
coefficients (pSC) and P,y values are described (n=282). d, Faecal levels of
monosaccharidesin MetS (n=306).For a, the box plotsindicate the median
(centreline), upper and lower quartiles (box limits), and upper and lower
extremes except for outliers (whiskers). conc., concentration. For ¢, the density
plotsindicate median and distribution. Foraand d, statistical analysis was
performed using Kruskal-Wallis tests followed by Dunn’s test (a) and rank-based
linear regression adjusted by age and sex (d); *P < 0.05, **P < 0.01, ***P< 0.001.
Seethe Source Data (a) and Supplementary Table 5 (d) for exact Pvalues.

hydrophilic metabolites, most of the CAGs showing significant associa-
tions with IR were those of carbohydrate metabolites, mainly mono-
saccharides (hydrophilic CAGs 5,12 and 15; Fig. 1b, top). Short-chain
fatty acids (SCFAs), which are known as carbohydrate fermentation
products, were also increased in IR (hydrophilic CAG 8). Hydrophilic
CAG 18 remained unannotated as it included metabolites from dif-
ferent pathways (Supplementary Table 5). KEGG pathway enrich-
ment analysis of the metabolitesin these IR-related hydrophilic CAGs
revealed that these metabolites were indeed involved in carbohydrate
metabolism (Extended Data Fig. 2a). Specifically, we found that the
major monosaccharides such as fructose, galactose, mannose and
xylose significantly correlated with IR (Fig. 1c). Among the SCFAs,
propionate was particularly increased in IR (Extended Data Fig. 2b),
consistent withits roleingluconeogenesis'. Faecal monosaccharides
were similarly increased in MetS, obesity and prediabetes (Fig.1d and
Extended Data Fig. 2c,d). By contrast, disaccharides showed weak or
no association (Extended Data Fig. 2b-d). These findings show that
the end products of carbohydrate degradation—such as monosaccha-
rides, which arereadily absorbed and used by the host—are particularly
increased in the faeces of individuals with IR and MetS. Supporting
these findings, our analysis of previously published faecal metabo-
lomics data from the TwinsUK cohort” showed that faecal monosac-
charides, notably glucose and arabinose, were positively associated
with obesity and HOMA-IR, both of which relate to IR (Extended Data
Fig. 3a-c and Supplementary Table 9). Similarly, the peak intensity
of faecal fructose, glucose and galactose was associated with BMI in
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Fig.2|IR-associated faecal metabolites are associated with altered gut
microbiotaand microbial genetic functions. a, Co-abundance clusters of
bacteriaatthe genuslevel and their abundance (n =282). The participants were
classified into four clusters, Ato D, according to their taxonomic profiles. The
proportionofindividuals with IR are shown. Mid, intermediate. b, HOMA-IR,
BMI, triglycerides (TG) and HDL-C levels among the participant clusters.

¢, Bacteria-metabolite networks of co-abundance microbial groups froma
and faecal metabolites (n =282). All faecal hydrophilicand bacteria-related
lipid metabolites were included. Only interactions with positive and significant
(P,4j<0.05) Spearman’s correlations are shown. The metabolitesin CAGs
relating to carbohydratesin Fig.1bare highlighted inred. Unclust., unclustered.
d, The number of significant positive and negative correlations between
generaand faecal carbohydrates. The top five generaineach correlation are
shown. e, KEGG pathwaysrelating to carbohydrate metabolism and membrane
transport, faecal carbohydrates, the top three genera positively or negatively
correlated with faecal carbohydrates, and the participant clusters. KEGG

a small number of individuals without inflammatory bowel disease
(IBD) from HMP2 data’® (Extended Data Fig. 3d). Together, these find-
ingsindicate that faecal carbohydrates areincreasedinIRand related
pathologies and that this alteration is consistently observed across
populations.

In addition to hydrophilic metabolites, faecal lipid CAGs were also
associated with IR (Fig. 1b). Lysophospholipids, bile acids and acyl-
carnitine were associated with IR and MetS as reported previously®.
Among them, a lipid CAG largely consisting of digalactosyl/glucosyl-
diacylglycerol (DGDG) (lipid CAG11) cameto our attention as DGDG s
reportedly derived frombacteria®®?. These lipids contain glucose and/
or galactosein their structures, although their biological functionsin
mammals are largely unclear. Most of the DGDGs in this cluster showed
positive correlations with some of the precursor diacylglycerols and
monosaccharides (that is, glucose and galactose) (Extended Data
Fig. 4a). As diacylglycerols are deeply involved in IR pathogenesis?,
the biological functions of this metabolite class are of particular inter-
est. Notably, DGDGs with different acyl chains in lipid CAG 41 showed

No. of faecal carbohydrates

o

MA ms mc mp

orthologuessignificantly (P,4;< 0.05) associated with the metabolite (left) and
taxonomic abundance (right) are summarized as the percentage enrichment
among KEGG pathways. The median percentage of 15 faecal carbohydrates
(carb.)isshownin colour (blue tored) ontheleft, whereas the percentage
enrichmentis shown asthe disk size on theright; the Spearman’s correlations
between pathway-level abundance and six genera are shownin colour (blue to
yellow) inthe middle (n=266).f, Theabundance of representative KEGG
orthologuesinvolvedinglycosidase among the participant clusters (n=266).
The abundance was transformed by arcsine square root transformation. The
density plotsinband findicate the median and distribution. Statistical analysis
was performed using rank-based linear regression adjusted by age and sex

(b; Supplementary Table 10), two-sided Wilcoxon rank-sum tests with multiple-
testing correction (e; Supplementary Table 16), and Kruskal-Wallis tests with
Dunn’s test (f; Supplementary Table 18).*P< 0.05, **P< 0.01,***P< 0.001in
comparisonto cluster C (with the lowest proportion of IR) (bandf).

no association with IR (Supplementary Table 7), implying that the dif-
ferences in acyl chains of lipids may have a physiological importance
asreported previously?.

Microorganism-metabolite relationshipsin IR

We nextinvestigated thealterationin gut microbiotaand the functions
of gut microbiota that are associated with IR. Gut microbiota diver-
sity varied amongindividuals (Extended DataFig. 5a-e). We then pro-
filed the genus-level microbial composition of the study participants
using 16S rRNA sequencing data* and identified four bacterial groups
(Extended Data Fig. 5f). Group 1was dominated by the Lachnospiraceae
family such as Blautia and Dorea, whereas group 2 was characterized by
Bacteroidales (such as Bacteroides, Parabacteroides and Alistipes) and
Faecalibacterium.Group 3 contained Actinobacteria genera. Group 4
did not form a distinct network. We could further classify the study
participants into four clusters, A to D, on the basis of their taxonomic
profiles (Fig. 2a). Individualsin cluster C distinctly harboured group 2

Nature | www.nature.com | 3



Article

with Bacteroidales, whereas those in cluster D showed a higher abun-
dance of group 1and 3 bacteria (Extended Data Fig. 5g). Notably, the
proportionof IR (Fig.2a; P= 0.0071) was significantly lower in cluster C.
Other metabolic parameters associated with IR and MetS such as
HOMA-IR, BM|, triglycerides, HDL-cholesterol (HDL-C) and adiponectin
were also different between cluster C (with the lowest proportion of
IR) and the other three clusters (Fig. 2b and Supplementary Table 10).
The proportion of IR among individuals with abundant group 1 and
3 bacteria was consistently higher than those with abundant group
2 bacteria, as identified on the basis of shotgun metagenomics data
(Extended Data Fig. 5h). HOMA-IR showed negative associations with
the genus Alistipesinthe Rikenellaceae family and several species from
Bacteroides, Bifidobacterium and Ruminococcus (Extended Data Fig. 5i
and Supplementary Tables 11 and 12), partly recapitulating previous
reportsregarding individuals with obesity” . Notably, different genera
and species correlated with other clinical markers, suggesting that the
individual association between microbial taxa and clinical manifesta-
tionis not as robust as in the co-abundance analysis.

We next constructed a microorganism-metabolite network on the
basis of the significant positive or negative correlations (Supplemen-
tary Table 13). Although faecal SCFAs and lipids such as DGDG corre-
lated with both IR- and IS-associated bacterial groups, IR-associated
faecal carbohydrates predominantly correlated with generain groups1
and 4, themost prominentbeing Doreain Lachnospiraceae (Fig.2c,d).
By contrast, the majority of these carbohydrates negatively corre-
lated with IS-associated generain group 2 bacteria such as Bacteroides,
Alistipes and Flavonifractor (Fig. 2d and Extended Data Fig. 5j), with
minimal correlations with bacteriain group 1. Accordingly, the faecal
carbohydrate levels were distinctly different among the participant
clusters (Extended Data Fig. 5k). Previous studies have suggested
that several Lachnospiraceae species are involved in polysaccharide
fermentation®®?, while Alistipes is increased on an animal-based diet
rather than a polysaccharide-rich diet®. These findings highlight a tight
connectionbetween carbohydrate-degradation products and IR-and
IS-associated bacteria, suggesting that these bacteriamay be involved
inthe aberrant faecal carbohydrate profile inIR.

The IR-associated faecal carbohydrates were also correlated with
KEGG pathways relating to carbohydrate metabolism and transpor-
tation, such as the phosphotransferase system (PTS), starch and
sucrose metabolism, and galactose metabolism, while negatively
associated with pathways relating to carbohydrate catabolism, such
as glycolysis and pyruvate metabolism (Fig. 2e and Supplementary
Tables14 and 15). These pathways were also distinctly correlated with
the participant clusters defined in Fig. 2a and the genera relating to
carbohydrates defined in Fig. 2d. Amino acid metabolism was also
different, particularly between clusters Cand D, whereas lipid metabo-
lism did not show distinct associations with microbiota (Extended
Data Fig. 6a,b and Supplementary Table 16). Although carbohydrate
pathways such as PTS and starch and sucrose metabolism showed
strong positive associations with HbAlc and y-GTP, the associations
with other IR markers were generally sparse (Extended Data Fig. 6¢
and Supplementary Table 17), suggesting that metabolites are more
sensitive to the clinical manifestations as shown in Fig. 1a. PTSis an
essential component for bacteriatoincorporate sugarsinto themselves
as energy sources®. Detailed analyses of KEGG orthologues revealed
that faecal carbohydrates and participant clusters mainly correlated
with PTSs relating to disaccharides and amino sugars (Extended Data
Fig.6d,e and Supplementary Table 18), suggesting that the preference
of sugar use by microbiota through PTS may affect the metabolite
levels. Glycosidases, which catalyse the breakdown of oligo- and disac-
charides®, werealso associated with faecal monosaccharides (Extended
DataFig. 6f). Extracellular glucosidases such as B-fructofuranosidase
(K01193, KEGG Orthology database), amylosucrase (K05341, KEGG
Orthology database) and oligo-1,6-glucosidase (K01182, KEGG Orthol-
ogy database), which were predicted to degrade sucrose and dextrin
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into glucose and fructose (Extended Data Fig. 6g,h), showed the high-
est positive correlations, especially with faecal glucose. By contrast,
glucosidases relating to starch use such as a-amylases (K01176 and
K07405, KEGG Orthology database) were negatively linked with faecal
carbohydrates. Importantly, the abundance of these glycosidase genes
was significantly different between participant cluster C and the other
three clusters, suggesting that taxonomic profiles largely explain the
variations of glucosidases (Fig. 2f, Extended Data Fig. 6h and Supple-
mentary Table18). Consistently, disaccharide-breakdown genes were
predominantly conserved in the genomes of Blautia and Dorea abun-
dantin cluster D, whereas they were almost lacking in Bacteroidales
abundant in cluster C (Extended Data Fig. 6i). Together, our findings
reveal four distinct populations with unique taxonomic profiles and
carbohydrate metabolisms characterized by sugar use and degrada-
tion, which correlate with IR and its related markers.

Faecal carbohydrates and inflammationinIR

Consistent with previous reports'?, the host cytokine, metabolomic
and transcriptomic signatures were highly associated with IR (Sup-
plementary Tables19-21). Moreover, many of these PBMC genes were
functionally involved in inflammation (Extended Data Fig. 7a) and
possibly derived from monocytes (Supplementary Table 21). Several
studies have suggested that microbial components such as lipopoly-
saccharides have a role in facilitating inflammation of metabolic
diseases®?**. However, it remains unclear whether microbial metabo-
lismisinvolvedinlow-grade inflammation. We therefore tried to infer
possible associations between host inflammatory signatures of IRand
faecal carbohydrates. First, the cross-omics correlation-based network
withindividualmetabolites, bacteria, transcripts and cytokines associ-
ated with IRrevealed that faecal carbohydrates were strongly tied with
bothbacteriaand host IR-related signatures, especially cytokines, sug-
gesting that these metabolites are the hubs of the host-microorganism
network in IR (Fig. 3a, Extended Data Fig. 7b,c and Supplementary
Table 22). Differential abundance, calculated as the ratio of their abun-
danceinIR and IS, was most pronounced in the associations between
faecal carbohydrates and cytokines. Notably, IL-10, a plasma cytokine,
showed the most prominent associations with faecal carbohydrates
and modestly with PBMC-derived transcripts, supporting recent stud-
ies showing its paradoxical effect to facilitate IR*">. Faecal carbohy-
drates moderately explained the variance of IL-10 and, to a lesser extent,
adiponectin, leptinand serpin E1, suggesting that faecal carbohydrates
are particularly associated with these cytokines (Fig. 3b). Although
the proportions of variance explained by faecal carbohydrates were
lower than by plasma metabolites, they were much higher than those
by genus-level abundance, highlighting the role of faecal metabo-
lites linking gut microbiota and host inflammatory responses. We
next sought to infer whether these cytokines mediated the effects
of faecal carbohydrates on host metabolism using causal mediation
analyses®®. We found that IL-10, serpin E1, adiponectin and leptin medi-
ated mostinsilico causal relationships between faecal carbohydrates
and host IR markers such as HOMA-IR (Fig. 3¢, Extended Data Fig. 7d
and Supplementary Table 23). Notably, there were unique correspond-
ences between metabolites and cytokines; for example, IL-10 mediated
the effects of fructose, mannose, xylose and rhamnose, but not other
metabolites. Although the biologicalimportance of these unique cor-
respondences remains to be investigated, the combined analyses of
faecal microbiota, metabolome and host inflammatory phenotypesin
IR suggest a previously unrecognized interaction, whereby excessive
monosaccharides may affect host cytokine expression.

IS-associated bacteria in experimental models

The above findings from human multi-omics analyses revealed an asso-
ciationbetween carbohydrate metabolites and IR pathology. To address
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Supplementary Table 22.b, The explained variance of ten plasma cytokines
predicted by each omics dataset using random-forest classifiers. c, Analluvial
plotshowing the plasma cytokines significantly mediated the insilico effects
offaecal carbohydrates on host metabolic markers. The lines show the mediation
effectsandthe coloursrepresent the associations mediated by individual
cytokines. Details are provided in Supplementary Table 23.

the causal relationship between gut microbiota, faecal carbohydrates
and metabolic diseases, we first analysed metabolites in the bacterial
culture of 22 human faecal IS- and IR-associated bacteria. These bac-
teria were selected on the basis of the findings from the genus-level
co-occurrence (Fig.2a,b) and the species-level (Extended Data Fig. 5i)
profiles. Principal component analysis plots of 198 metabolites indi-
cated that Bacteroidales, arepresentative IS-associated bacterial order,
showed adistinct metabolic profile along PC1 (Extended DataFig.8a,b
and Supplementary Table 24). The top 10 metabolites contributing to
the group separation included several amino acids and fermentation
products such as succinate and fumarate, and the majority of these
metabolites were preferentially produced by Bacteroidales (Extended
DataFig. 8b,c). We detected 13 out of 15 carbohydrates associated with
IR (Fig. 1b) in the bacterial culture (Extended Data Fig. 8b). Most of
these carbohydrates were plotted negatively along PC1, suggesting
that these metabolites were negatively associated with Bacteroidales.
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Fig.4|1S-associated bacteriaameliorate IRinexperimental models.

a, Postprandialblood glucosein mice fed a high-fat diet at 4 weeks after the
initiation of bacterial administration. The abbreviations are defined in Extended
DataFig.8a.n=12(vehicle), n=10 (A. indistinctus and A. finegoldii)and n=5
(other groups) mice.b,c, Blood glucose levels during the insulin tolerance test
(b) andthe AUC (c) (n=5pergroup).d, Thecorrelations between the AUC of the
insulintolerance test and caecal levels of fructose, glucose and mannoseinthe
A.indistinctus (sky blue) or vehicle (grey) groups. Spearman’s coefficients (p)
and Pvaluesareshown. Thelinesand grey zones show the fitted linear regression
lines with95% confidenceintervals.ITT, insulin tolerance test. Representative
dataoftwo (aandd) or three (bandc)independent experiments. Fora-c, data
aremean *s.d. Statistical analysis was performed using Kruskal-Wallis tests
withDunn’s test (aand c¢) and two-way repeated-measures analysis of variance
(ANOVA) (b).*P<0.05,**P<0.01,***P<0.001(aand c). Exact Pvaluesforaand c
areprovidedinthe Source Data.

Glucose, mannose and glucosamine were preferentially consumed
by Bacteroidales compared with the other orders, whereas lactulose
was mainly produced by Eubacteriales (Extended Data Fig. 8d). Alis-
tipes indistinctus was the most potent in consuming a wide variety
of carbohydrates (Extended Data Fig. 8e,f). These findings show that
Bacteroidales species are potent consumers of several carbohydrates,
driving the production of their fermentation products.

We next tested the potential therapeutic effects of seven candidate
bacteria shown to be associated with IS in human cohort findings.
Postprandial blood glucose levels were particularly reduced in mice
administered with A. indistinctus, Alistipes finegoldii and Bacteroides
thetaiotaomicron that were fed a high-fat diet (Fig. 4a). Insulin toler-
ancetestsalsorevealed that these strains ameliorated IR, most prom-
inently by A. indistinctus administration (Fig. 4b,c). A. indistinctus
administration ameliorated body mass gain, ectopic triglyceride
accumulation in the liver and glucose intolerance (Extended Data
Fig.9a-d).Serumlevels of HDL-C, adiponectinand, to alesser extent,
triglycerides, were also improved in mice that were treated with
A.indistinctus (Extended Data Fig. 9e-g). The findings of the hyperin-
sulinaemic-euglycaemic clamp analysisindicated that A. indistinctus
administration significantlyimproved IR and, particularly, whole-body
glucose disposal (Extended Data Fig. 9h-j). Phosphorylation of AKT
in the liver and epididymal fat was increased in mice treated with
A. indistinctus and A. finegoldii mice (Extended Data Fig. 9k,), sug-
gesting that insulin signalling was improved in the liver and adipose
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tissue. These findings reveal a potency of A. indistinctus administration
inameliorating diet-induced obesity and IR.

Mechanistically, metabolic measurement revealed that carbohydrate
oxidation was significantly reduced in mice that were treated with
A.indistinctus,implying that carbohydrate useislimited (Extended Data
Fig.9mand Supplementary Table 25). As dietary intake and locomotor
activity remained unchanged (Extended Data Fig. 9n,0), we reasoned
that host-accessible carbohydrates in the intestine were reduced by
treatment with A. indistinctus. In this regard, A. indistinctus admin-
istration substantially altered caecal metabolites, characterized by
areduction in several carbohydrates including fructose, a lipogenic
monosaccharide® (Extended Data Fig. 10a-c and Supplementary
Table 26). Fructose was similarly reduced inthe serum (Extended Data
Fig.10d). Importantly, the AUC of insulin tolerance test was positively
correlated with the caecal monosaccharides fructose, glucose and
mannose (Fig.4d). Collectively, these findings reveal that A. indistinctus
ameliorates IR and affects intestinal carbohydrate metabolites inmice,
supporting our observations in the human cohort.

Discussion

Todeepenour understanding of the host-microorganismrelationship
in IR, we used multimodal techniques to conduct acomprehensive
and extensive study investigating the interactions between the gut
microbiome and metabolic diseases in humans. Although carbohy-
drate metabolism by the gut microorganisms has been suggested to
influence the pathogenesis of obesity>** and prediabetes®®, the actual
mechanistic linkage has been elusive in humans owing to the lack of
detailed metabolomicinformation. Inthis regard, the major strength
of our approach is that we combine faecal metabolomics catalogu-
ing more than 2,800 annotated metabolites with both microbiome
and host pathology. This metabolome-based approach enabled us
to identify the faecal metabolites related to IR, identify an associa-
tion between faecal carbohydrates and low-grade inflammation of IR,
and efficiently select candidate strains for functional validations in
experimental settings (Extended Data Fig. 10e). Together, our study
highlights the advantage of comprehensive omics strategy in explor-
ing the involvement of microbial metabolism and their productsin
the pathogenesis of IR. Excessive monosaccharides have the potential
to promote ectopic lipid accumulation while also activatingimmune
cells, leading to low-grade inflammation and IR**2, Fructose is awidely
recognized risk factor for inflammation and IR due to its role in lipid
accumulation®®, whereas galactose has been shown to participate
in the energy metabolism of activated immune cells*’. Our in vivo
studies confirm that A. indistinctus administration improves lipid
accumulation and thereby IR, while simultaneously reducing intesti-
nal monosaccharide levels (Fig. 4d). Nevertheless, we are aware that
further mechanistic studies are needed to examine the kinetics of
absorption and their effects on host metabolism. In particular, how
Alistipes strains suppress carbohydrate metabolism is an intriguing
question (for example, whether these bacteria per se inhibit carbohy-
drate metabolism, or whether they interact with other commensals),
asitwould directly openthe possibility of anew therapeutic strategy.
Given that A. indistinctus improved whole-body IS (Extended Data
Fig.9i), it would beimportant to investigate the involvement of insulin
signallingnot onlyintheliver butalsoin peripheraltissues, including
skeletal muscle and adipose tissue, along with the accumulation of
specific lipid molecules (such as ceramides and diacylglycerols) in
these tissues. Such investigations hold the potential to shed light on
the underlying mechanismsthat contribute to A. indistinctus-mediated
improvement of IR. Finally, two participants in the human study were
unable to collect their faecesin the morning, which could potentially
influence the outcomes due to the lack of stringent control over
time-of-day and fasting conditions. We therefore believe that longi-
tudinal studies incorporating a timely documentation of dietary habits
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arewarranted to dissect the intricate impacts of microbial metabolism
onthetrajectory of diabetes and its complications while accounting
for potential confounding factors.
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Methods

Study participants and data collection

The study participants were recruited from 2014 to 2016 during their
annual health check-ups at the University of Tokyo Hospital. The indi-
vidualsincluded both male and female Japanese individuals aged from
20to 75years. The exclusion criteria were as follows: established diag-
nosis of diabetes, routine use of medications for diabetes and/or intesti-
nal diseases, use of antibiotics within 2 weeks before sample collection
andloss of 3 kg of body weight in the 3 months before sample collection.
Written consent was obtained from the participants after a thorough
explanation of the nature of the study at their health-checkups.

To normalize the participants’ clinical characteristics, we planned
torecruitaround 100 healthy individuals, 100 individuals with obesity
(BMI =25, based on the Japanese definition) and 100 individuals witha
prediabetic condition (FBG =110 mg dI™! and/or HbAlc >6.0%) on the
basis of their clinical data, and stopped recruiting when the number of
participants almost reached the goal. The sample size was determined
on the basis of previous metagenomics studies showing microbial
signatures of diabetic patients*. We enrolled 112,100 and 101 individu-
als for the normal, obese and prediabetic groups, respectively. The
participants were provided with instructions to fast overnight before
their visits, and all clinical information and blood samples were col-
lected in the morning during their hospital visit. Blood samples were
immediately centrifuged to collect plasma and then stored at —80 °C
until the sample preparation and analysis. The participants were also
instructedto collect faecal samples in the morning and were provided
withguidance onhowto collect and preserve faecal samples, along with
a kit comprising a sampling tube and an ice pack. The faecal samples
were then transported to the hospital either by refrigerated shipping
or by the participants themselves. Inboth scenarios, the samples were
delivered in a chilled state within 24 h after collection and stored at
-80 °Cuntil sample preparation and analysis. Consequently, 256 par-
ticipants collected their faeces in the morning on the day of their hos-
pitalvisit. As for the remaining participants, they collected their faeces
in the morning between 2 days before and 7 days after their hospital
visit, with the exception of 5 individuals who collected their faeces in
the morning more than 7 days after their hospital visit, 2 individuals
who reported collecting their faeces in the evening 1 day before their
hospital visit, and 5 individuals who did not provide faecal samples.
Moreover, two individuals withdrew from the study after enrolment.
Thus, 306 individuals who underwent physical examination, labora-
tory tests, faecal sampling for faecal 16S rRNA pyrosequencing and
metabolomic analyses, and plasmasampling for plasma metabolomic
analyses were included for the analysis. Owing to the limited samples,
faecal metagenomics data were available for 290 individuals; CAGE
analysis datafor 298 individuals; and plasma cytokine and insulin data
for282individuals. The number of samplesincludedin each analysisis
describedinthefigure legends. The clinical study was approved by the
institutional review board of RIKEN and The University of Tokyo and
performed in accordance with the institutes’ guidelines.

Although we determined the criteria for enrolment, these criteria
were not necessarily appropriate for subsequent analyses. For example,
those in the prediabetes group were significantly leaner than those in
the obese group (27.3 kg m2versus 25.2 kg m2, P<0.0001). Moreover,
owingtothe nature of the study participants (that is, those participated
inregular health checkups), the blood glucose and HbAlc of the predia-
betes group were significantly but only marginally higher than those
of the obese group (FBG,106 mg dI versus 94 mg dI™*, P< 0.0001; and
HbAlc, 6.2% versus 5.6%, P < 0.0001). We therefore reasoned that, in
these subclinical conditions of diabetes, many metabolic traits may
be overlapping between prediabetes and obesity groups and they do
not necessarily capture their distinct featuresin metabolic and clinical
continuums. This hinders us from distinguishing microbial and metabo-
lomic characteristics directly related to human metabolic dysfunctions.

We therefore considered thatindividual indices representing partici-
pants’ clinical conditions (that is, IR and MetS, as described below)
may offer a better interpretation of the participants’ metabolic traits
and data. Nevertheless, we observed consistent results even with the
clinical criteria of obesity and prediabetes (Extended Data Fig. 2d).

Phenotypic outcomes

IR is defined as HOMA-IR >2.5, as has been set for the Japanese popu-
lation®. Similarly, normal IS was defined as HOMA-IR <1.6. HOMA-IR
is calculated using the following formula: fasting plasma insulin
(LU mI™) x fasting plasma glucose (mg dI™)/405. HOMA-IR values could
be calculated for 282 individuals only, owing to the limited data of
plasmainsulin in some participants. MetS is diagnosed according to
the Japanese criteria**, which require an abdominal circumference of
>85 cm for male and 290 cm for female individuals and at least two
out of the following three clinical abnormalities: (1) dyslipidaemia,
defined as triglyceride levels of 2150 mg dI"* and/or HDL-C levels of
<40 mg dI™%; (2) elevated blood pressure, defined as systolic blood pres-
sure of 2130 mmHg and/or diastolicblood pressure of 285 mmHg; and
(3) impaired fasting glucose, defined as FBG levels of 110 mg dI ™. Indi-
viduals who meet the criteria of abdominal circumference but only one
clinical abnormality were defined as pre-MetS, as reported previously®.

Measurement of plasma cytokines

Plasma cytokines were measured using Human Adipokine Magnetic
Bead Panel 2 (Millipore, HADK2MAG-61K) and Human Obesity Pre-
mixed Magnetic Luminex Performance Assay Kit (R&D, FCSTMO08)
according to the manufacturers’ instructions. Measurements below
thelower detection limits were considered to be zero, and those above
the upper detection limits were considered to be the highest values of
analysed cytokines.

Preparation for faecal samples

Aliquots (5 g) of faeces were blended with 30 ml methanol and filtrated
with100 pm of mesh filter to remove food residue after vigorous vortex-
ing. The filtrate was centrifuged at 15,000g for 10 min at 4 °C and the
supernatant (methanol extract) was used for metabolomics analysis.
DNA of the faecal microbiome was extracted from the pellet.

Extraction and measurement for hydrophilic metabolites of
faecal and plasma samples

We followed the extraction process and gas chromatography-tandem
MS (GC-MS/MS) measurement methods for water-soluble metabolites
described previously*® with some modifications. In brief,a10 pl aliquot
of plasmawas added to 150 plmethanol, 125 pl Milli-Q water, 15 plinter-
nal standard solution (1 mM 2-isopropylmalicacid) and 60 pl CHCI,. For
faecal samples, a 25 plaliquot of methanol extract was added to 125 pl
methanol, 150 pl Milli-Q water containing internal standard (100 uM
2-isopropylmalic acid) and 60 pl CHCl,. The solution was shaken at
1,200 rpm for30 minat 37 °C. After centrifugation at16,000g for 5 min
atroomtemperature, 250 pl of the supernatant was transferred toanew
tubeand 200 pl of Milli-Q water was added. After mixing, the solution
was centrifuged at16,000g for 5 min at room temperature, and 250 pl of
the supernatant was transferred to anew tube. The samples were evapo-
rated dry using a vacuum evaporator for 20 min at 40 °C and lyophi-
lized usingafreeze dryer. Dried extracts were derivatized with 40 pl of
20 mg ml™ methoxyamine hydrochloride (Sigma-Aldrich) dissolvedin
pyridine and shaken at 1,200 rpmfor 90 minat30 °C. The solution was
then mixed with 20 pl of N-methyl-N-trimethylsilyl-trifluoroacetamide
(MSTFA, GL Science) and incubated for 30 min at 37 °C with shaking
at 1,200 rpm. After derivatization, the samples were centrifuged at
16,000g for 5 min at room temperature, and the supernatant was trans-
ferred to a glass vial. The analysis was performed using a GC-MS/MS
platform on the Shimadzu GCMS-TQ8030 triple quadrupole mass
spectrometer (Shimadzu) with a capillary column (BPXS5, SGE Analytical



Science). The GC oven was programmed as follows: 60 °C held for 2 min,
increased to 330 °C (15 °C min™), and finally 330 °C held for 3.45 min.
GCwasoperatedin constant linear velocity mode set to39 cms™. The
detector and injector temperatures were 200 °C and 250 °C, respec-
tively. Injection volume was set at 1 pl with a split ratio of 1:30.

Wefollowed the SCFA extraction and GC-MS/MS measurement meth-
odsas previously described* with some modifications. A90 plaliquot
of plasmawas added to 10 pl Milli-Q water containing internal standards
(2mM[1,2-13C2]acetate,2 mM[2H7]butyrate and 2 mM crotonate). For
faecal samples, a 25 pl aliquot of methanol extract was added to 10 pl
Milli-Q water containing internal standards and then centrifugally
concentrated at 40 °C and reconstituted with 100 pl of Milli-Q water.
Then, 50 plof hydrochloricacid (HCI) and 200 pl of diethyl ether were
added to the solution and mixed well. After centrifugation at 3,000g
for 10 min, 80 pl of the organic layer was transferred to a glass vial
and 16 pl N-tert-butyldimethylsilyl-N-trifluoroacetamide (MTBSTFA,
Sigma-Aldrich) was added to derivatize the samples. The vialswereincu-
bated at 80 °C for 20 min and allowed to stand for 48 h before injection.
The analysis was performed using a Shimadzu GCMS-TQ8030 triple
quadrupole mass spectrometer with a capillary column (BPXS5). The
GCovenwas programmed as follows: 60 °C held for 3 min, increased to
130°C (8 °C min™), increased to 330 °C (30 °C min™) and finally 330 °C
held for 3 min. The detector and injector temperatures were 230 °C
and 250 °C, respectively. GC was operated in constant linear velocity
modesetto40 cms™. Injection volume was setat 1 pul withasplit ratio
of1:30. The datawere processed and concentration was calculated by
LabSolutions Insight (Shimadzu).

Overall, 195 and 100 metabolites in the faecal and plasma samples,
respectively, were detected by our GC-MS/MS platform and passed
quality control. The values below the limit of detection were replaced
with zero. Consequently, 110 faecal and 88 plasma metabolites that
were detected (thatis, above zero) in more than 75% of participants were
included in subsequent analyses, for which they were combined into
acommon analysis pipeline and defined as hydrophilic metabolites.

Lipidomics of faecal and plasma samples

The lipidomics analysis was performed according to a previously
reported study?’. Methanol, isopropanol, chloroform and acetoni-
trile of liquid chromatography (LC)-MS grade were purchased from
Wako. Ammonium acetate and EDTA were purchased from Wako and
Dojindo, respectively. Milli-Q water was purchased from Millipore
(Merck). EQuiSPLASH was purchased from Avanti Polar Lipids. Pal-
mitic acid-d;and stearic acid-d, were purchased from Olbracht Serdary
Research Laboratories.

For plasma lipid extraction, an aliquot of 20 pl of human plasma
sample was added to 200 pl of methanol containing 5 pl of EQUiSPLASH,
10 pM palmiticacid-d;and 10 pM stearic acid-d,, and vortexed for10 s.
Then, 100 pl of chloroformwas added and vortexed for 10 s. After incu-
bation for 2 h at room temperature, the solvent tube was centrifuged
at2,000g for 10 min at 20 °C. A total of 200 pl of supernatant was
transferred to an LC-MS vial (Agilent Technologies). For faecal lipid
extraction, 50 pl of the methanol extract was added to 145 pl of metha-
nol containing 5 pl of EQUiSPLASH, 10 uM palmitic acid-d; and 10 pM
stearicacid-d;ina2 mlglass tube, and vortexed for10 s. Then, 100 plof
chloroformwas added and vortexed for 10 s. After incubation for1 hat
roomtemperature, 20 plof water wasadded and vortexed for 10 s. After
10 min incubation at room temperature, the solvent was centrifuged
at2,000g for 10 min at 4 °C, and the supernatant was transferred to
the LC-MS vial. All of the samples were divided into four batches for
plasma analyses and five batches for faecal analyses, with 70-80 and
55-60 samples per batch after randomization, respectively. For each
batch, a series of samples was prepared, and subsequent LC-MS/MS
measurements were performed. A quality control sample was prepared
by mixing the same volume of plasma from the first batch subjects.
A procedure blank was prepared by using the same volume of water

instead of a biological sample. The blank sample was analysed at the
beginning and the end of each analysis batch, and the quality-control
sample was injected every ten study samples.

The LC system consisted of a Waters Acquity UPLC system.
Lipids were separated on an Acquity UPLC Peptide BEH C18 column
(50 x 2.1 mm; 1.7 um) (Waters). The column was maintained at 45 °C
at a flow rate of 0.3 ml min™.. The mobile phases consisted of (A) 1:1:3
(v/v/v) acetonitrilezmethanol:water with ammonium acetate (5 mM)
and 10 nM EDTA; and (B) 100% isopropanol with ammonium acetate
(5mM) and 10 nM EDTA. A sample volume of 0.5-3 pl, depending bio-
logical samples, was used for the injection. The separation was con-
ducted under the following gradient: 0 min, 0% B; 1 min, 0% B; 5 min,
40% B; 7.5min, 64% B; 12 min, 64% B; 12.5 min, 82.5% B; 19 min, 85% B;
20 min, 95%B;20.1 min, 0% B; and 25 min, 0% B. The sample temperature
was maintained at 4 °C.

MS detection of lipids was performed ona quadrupole/time-of-flight
mass spectrometer TripleTOF 6600 (SCIEX). All analyses were per-
formed in high-resolution mode in MS1 (-35,000 full width at
half-maximum) and the high sensitivity mode (20,000 full width at
half-maximum) in MS2. Data-dependent MS/MS acquisition (DDA) was
used. The parameters were MS1 and MS2 mass ranges, m/z70-1,250;
MSlaccumulation time, 250 ms; MS2 accumulation time, 100 ms; col-
lision energy, +40/-42 eV; collision energy spread, 15 eV; cycle time,
1,300 ms; curtain gas, 30; ion source gas 1, 40(+)/50(-); ion source
gas 2, 80(+)/50(-); temperature, 250 °C(+)/300 °C(-); ion spray volt-
age floating, +5.5/-4.5 kV; declustering potential, 80 V. The other DDA
parameters were dependent product ion scan number, 16; intensity
threshold, 100 cps; exclusion time of precursor ion, O s; mass toler-
ance, 20 ppm;ignore peaks, withinm/z200; and dynamic background
subtraction, true. The mass calibration was automatically performed
using an APCl positive/negative calibration solution through a calibra-
tion delivery system.

MS-DIAL (v.4.48)***8 was used with the following parameters: (data
collection) retention time begin, 1.0 min; retention time end, 18 min;
MS1and MS2 mass range begin, 0 Da; MS1 and MS2 mass range end,
2,000 Da; MSl1 tolerance, 0.01 Da; MS2 tolerance, 0.025 Da; (peak detec-
tion) minimum peak height, 3,000 amplitude; mass slice width, 0.1 Da;
smoothing method, linear weighted moving average; smoothinglevel,
3 scan; minimum peak width, 5 scan; exclusion mass list, none; (identifi-
cation) retention time tolerance, 1.5 min; MSlaccurate mass tolerance,
0.01 Da; MS2 accurate mass tolerance, 0.05 Da; identification score cut
off, 70%; all lipid subclasses were used as the search space; (alignment)
retention time tolerance 0.15 min; MS1 tolerance, 0.015 Da. The default
values were used for other parameters. In faecal lipidomics, a total of
48,790 and 20,367 chromatographic peaks were detected in positive-
and negative-ion mode data, respectively. Of these, 2,654 uniquelipid
molecules were annotated and semi-quantified in the MS-DIAL software
program and used for further statistical analyses. Likewise, in plasma
lipidomics, 1,469 and 2,167 chromatographic peaks were detected in
positive-and negative-ionmode data, respectively, and 635 unique lipid
molecules were annotated and semi-quantified. The semi-quantitative
value of lipids was calculated by the internal standards according to
the previous study®. The abbreviations of lipids are listed in Supple-
mentary Table 27. Details of lipid subclass characterization follow the
previous study?.

Co-abundance clustering of metabolites

To generate co-abundance clusters, 110 hydrophilic metabolites and
2,654 lipid metabolites detected in more than 75% of participants
were included. These metabolites were clustered based on their
co-abundance using the R package WGCNA* (v.1.72-1). The follow-
ing parameters were used for the analysis. For hydrophilic metabo-
lites, soft thresholding S =12, minimum cluster size = 3, deep split =4,
cut height = 0.9999, PAM clustering = F. For lipid metabolites, soft
thresholding 8 =14, minimum cluster size = 20, deep split =4, cut
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height = 0.999, PAM clustering = F. As soft thresholding of WGCNA
was notable to cluster all of the metabolites, the remaining metabolites
that did not fit the criteria were subsequently clustered on the basis of
biweight midcorrelation. The following parameters were used for the
secondary clustering. For hydrophilic metabolites, minimum cluster
size =3, deepsplit =4, cutheight = 0.9999, PAM clustering = F. For lipid
metabolites, minimum cluster size = 6, deep split = 4, cut height = 0.999,
PAM clustering =F. The clusters with biweight midcorrelation above
0.8 were merged. The first principal component (PC1) of each cluster
was calculated using the moduleEigengenes command of WGCNA and
used asthe representative value of the cluster for further analyses. The
representative classes of the clusters were described in Supplemen-
tary Tables 2 and 3. KEGG pathway enrichment analysis of CAGs was
performed on MetaboAnalyst (v.5.0)*° using 84 metabolite sets based
on the KEGG pathway. Hypergeometric test and false-discovery rate
(FDR)-adjusted Pvalues were used to test significance. The enrichment
ratio was calculated as the ratio of actual metabolite number to the
expected value in each pathway.

Reanalysis of publicly available metabolomic data

Tovalidate the associations between clinical markers and faecal metab-
olites, we used the metabolomic data of TwinsUKY and HMP2 (ref. 18).
The metabolome data of the TwinsUK cohortincluded 1,116 metabolites
including 36 carbohydrates. The median (interquartile range) of age and
BMlwere 65 years (60-71years) and 25.4 (22.8-28.8), and the propor-
tion of males was 6.6%. As reported previously”, the metabolite levels
were scaled by run-day medians. The data were then log-transformed
and scaled. For regression analyses, we filtered out the metabolites
detected in less than 50% of participants; as a result, 759 metabolites
including 29 carbohydrates were used for further analyses. The record
of BMIand HOMA-IR were used for phenotypic outcomes. For BMI, we
retrieved 786 samples measured on the same day of faecal collection.
For HOMA-IR, plasmaglucose and insulin obtained in the same year of
the faecal collection were used for the following calculation: plasma
glucose (mM) x insulin (pM)/6.945/22.5. We identified 550 individuals
who underwent both faecal collection and glucose and insulin meas-
urementinthe sameyear andincluded theminthe analysis. The HMP2
datawere obtained from the Inflammatory Bowel Disease Multi'omics
Database (https://ibdmdb.org/). Among the 26 out of 106 samples from
non-IBD control, BMI data were available for 20 samples. We further
excluded four individuals aged <10 years. As HMP2 is a longitudinal
study, only the first faecal sampling for metabolomics was used for
the current analysis to avoid redundancy. The intensity of fructose,
glucose and/or galactose was log-transformed and scaled.

DNA extraction from faecal samples

DNA extraction was performed according to a protocol described
previously*” with slight modifications. Before DNA extraction, the
faecal pellet was washed once with PBS and suspended in a10 mM
Tris-HCI/20 mM EDTA buffer (pH 8.0). Lysozyme (Sigma-Aldrich),
achromopeptidase (Wako) and proteinase K (Merck) were subsequently
added to the samples for cell lysis. DNA was recovered by a phenol-
chloroform extraction method. To purify the extracted DNA, RNA was
digested with RNase (Nippon Gene). DNA was then precipitatedina
solution containing polyethylene glycol 6000 (Hampton Research).
The DNA concentration was quantified using Quant-iT PicoGreen
(Thermo Fisher Scientific).

16S rRNA gene sequencing and taxonomic assignment

The hypervariable V1-V2 region of the 16S rRNA gene was amplified
by PCR using barcoded primers. PCR amplicons were purified using
AMPure XP magnetic purification beads (Beckman Coulter), and quanti-
fied using the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies
Japan). Equal amounts of each PCR amplicon were mixed and then
sequenced using the MiSeq (Illumina) system.

On the basis of sample-specific barcodes, reads were assigned to
each sample using bcl2fastq. Next, the reads lacking both forward
andreverse primer sequences were removed using BLAST and parasail
followed by trimming of both primer sequences. Data were further
denoised by removing reads with average quality values of <25 and pos-
sible chimeric sequences. Reads with BLAST match lengths of <90% with
the representative sequence in the 16S databases (described below)
were considered to be chimeras and were removed. The filter-passed
reads were used for further analysis. The 16S database was constructed
fromthree publicly available databases: the Ribosomal Database Pro-
ject(RDP;v.10.27), CORE (http://microbiome.osu.edu/) and areference
genome sequence database obtained from the NCBIFTPssite (ftp://ftp.
ncbi.nih.gov/genbank/, December 2011).

Operational taxonomic unit (OTU) clustering and UniFrac analysis
fromthefilter-passed reads, 3,000 high-quality reads per sample were
randomly chosen. Allreads (the number of samples x 3,000) were then
sorted accordingto their average quality value and grouped into OTUs
using UCLUST (http://www.drive5.com/) with a sequence-identity
threshold of 97%. The representative sequences of the generated OTUs
were processed for homology search against the databases mentioned
above using the GLSEARCH program for taxonomic assignments. For
assignment at the phylum, genus and species levels, sequence similarity
thresholds of 70%, 94% and 97% were applied, respectively.

Shotgun metagenomic sequencing

Metagenome shotgun libraries (insert size of 500 bp) were prepared
using the TruSeqNano DNA kit (Illumina) and sequenced onthe Illumina
NovaSeq platform. After quality filtering, reads mapped to the human
genome (HG19) or the phiX bacteriophage genome were removed. For
eachindividual, thefilter-passed NovaSeq reads were assembled using
MEGAHIT (v.1.2.4). Prodigal (v.2.6.3) was used to predict protein-coding
genes (=100 bp) in the contigs (=500 bp) and singletons (=300 bp).
Finally, 6,458,217 non-redundant genes were identified in the 290
samples by clustering the predicted genes using CD-HIT with a 95%
nucleotideidentity and 90% length coverage cut-off. Functional assign-
ment of the non-redundant genes was performed using DIAMOND
(e-value < 1.0 x 107) against the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (release 2019-10-07) to obtain the KEGG
orthologues. The genes with the best hit correlating to eukaryotic
genes were excluded from further analysis.

Quantification of annotated genes in human gut microbiomes

Fortaxonomicassignment of metagenomicreads, 1 millionfilter-passed
reads were processed for mOTU analysis (v.2.5.1)* to obtain the rela-
tive abundance at the species level. To functionally annotate the
predicted genes, 1 million filter-passed metagenomic reads per indi-
vidual were mapped to the combined reference gene set consisting of
non-redundant genes identified in this study, JPGM** and IGC> using
Bowtie2 with a 95% identity cut-off. Multi-mapped reads, that is, the
reads that mapped to multiple genes with identical scores, were nor-
malized to the proportion of the number of other reads that uniquely
mappedtothese genes, accordingto astrategy outlinedina previous
report®. The proportion of KEGG orthologues was calculated from
the number of reads mapped to them. For the enrichment analysis of
KEGG pathways, the significantly and positively (negatively) associ-
ated KEGG orthologue gave +1 (-1) for all of the upstream pathways
linked to the KEGG orthologue, and the points were summarized as
the ratio to the number of KEGG orthologues in the pathway. For the
KEGG-orthologue-level analyses of PTS, those including ‘phospho-
transferase system (PTS)’ inthe KEGG pathway (02060) were selected
for the following correlation analyses. Inthe analyses of glucosidases,
‘slycoside hydrolases’ defined in the CAZy database on the basis of
EC numbers* were selected. We further selected those included in
‘starch and sucrose metabolism’ in the KEGG pathway (00500). We
defined intracellular glucosidase by their substrate described in the
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KEGG pathway map; those cleave phosphorylated carbohydrates were
recognized as intracellular, and the rest of the genes were recognized
to possess extracellular enzymatic activities. The pathways were fur-
ther summarized into carbohydrate metabolism (09101), amino acid
metabolism (09105), lipid metabolism (09103) and membrane trans-
port (09131) on the basis of the KEGG Orthology database.

Comparison of KEGG organism genomes

The list of KEGG organisms used for this genome analysisis listed in
Supplementary Table 28. All KEGG organisms from genera Alistipes,
Bacteroides, Flavonifractor, Blautia, Dorea and Coprococcus, which
showed the top three positive or negative correlations with faecal
carbohydrates in Fig. 2d, were selected for this analysis. The lists
of genes involving the ‘starch and sucrose metabolism’ pathway
(00500) inthese KEGG organisms were extracted using the R package
KEGGREST (v.1.32.0). The representative protein sequences of Blautia
hydrogenotrophica strain 2789STDY5608857 (taxonomy ID 53443),
Dorealongicatena strain 2789STDY5608851 (taxonomy ID 88431) and
Dorea formicigenerans strain ATCC 27755 (taxonomy ID 411461) were
downloaded from the NCBI Datasets (https://www.ncbi.nlm.nih.gov/
datasets/genomes/). KEGG annotation of these protein sequence files
was performed using BlastKOALA (https://www.kegg.jp/blastkoala/)
with ‘Bacteria’ used as the taxonomy group. The presence of KEGG
orthologues relating to extracellular glycoside hydrolases in starch
and sucrose metabolism pathways shown in grey in Extended Data
Fig. 6f was summarized.

RNA extraction from PBMC

Blood samples were collected in Vacutainer CPT tubes (Becton
Dickinson) and mixed with the anticoagulant by gently inverting
the tubes 8 to 10 times. After centrifugation of the blood for 30 min
at1,500g, PBMCs were isolated as a diffuse layer above the gel. The
plasma was removed, and the PBMCs were collected in conical tubes
with 500 plRNAlater (Thermo Fisher Scientific). The conical tubes were
centrifuged at1,000gat room temperature for 3 minto pellet the cells
and the supernatant was discarded. The RNA was then isolated using
the Maxwell 16 LEV simplyRNA Blood Kit (Promega) according to the
manufacturer’sinstructions. The quality of the RNA was assessed using
Bioanalyzer (Agilent), asrecommended by the manufacturer. The RNAs
were quantified using the GloMax plate reader (Promega) and Quant-iT
RiboGreen RNA Assay Kit (Thermo Fisher Scientific).

CAGE analysis

The CAGE libraries were constructed according to the dual-index
nanoCAGE protocol, a template-switching-based variation of the
standard CAGE protocol designed for low quantities of RNA>¢,
cDNA libraries were prepared with RNA extracted from PBMC samples
and sequenced on the lllumina HiSeq 2000 (50 bp paired-end). The
sequenced reads were processed with the MOIRAI pipeline®’”: low qual-
ityand rDNA reads were first removed, then the remaining reads were
mapped to the human genome version hg38 patch 1using BWA v.0.5.9
(r16). The mapped reads were overlapped with the FANTOMS robust
promoter set (http://fantom.gsc.riken.jp/5/datafiles/latest/extra/
CAGE_peaks/) and mapped to the nearest GENCODE v.27 annotations
within (500 bp)*®*°. The mapped reads falling under each FANTOMS
CAGE cluster were summed to produce the raw expression counts.
Expression counts were converted to counts per million (CPM), and
CAGE clusters expressed in less than 100 samples with at least 1 CPM
and greater than 1 sample with at least 10 CPM were removed from
further analysis. For each sample, the richness index was calculated
using the R package vegan’s rarefy function with a subsample size of
100 onthefiltered raw counts. Samples with aread library size of less
than 1,000,000 and a number of unique CAGE clusters of <11,000
andrichness less than 44 were removed as outliers, with the thresh-
olds selected from visual inspection of the respective distributions.

Cell type specificities of promoters of interest were determined using
the FANTOMS5 hg38 human promoterome view.11in the ZENBU genome
browser (https://fantom.gsc.riken.jp/zenbu/). Top-hit cells for analysed
promoters were described. For cell-type gene set enrichment analysis of
genes significantly associated with IR, annotated genes were analysed
using Enrichr®®® and the Human Gene Atlas database®®, and the results
of celltypes with P, < 0.05 were selected. The Enrichr combined score
is defined as: c =log[p] z, where cis the combined score, pis the Pvalue
based on Fisher’s exact test and z is the z-score®.

Metabolite measurement in bacterial culture

The following strains were used for this culture analysis: A. indistinc-
tus (JCM16068), A. finegoldii (JCM16770), Alistipes putredinis (JCM
16772), B. thetaiotaomicron (JCM 5827), Bacteroides xylanisolvens (JCM
15633), Bacteroides ovatus (JCM 5824), Bacteroides caccae (JCM 9498),
Parabacteroides merdae (JCM 9497), Parabacteroides distasonis (JCM
5825), D. formicigenerans (JCM 31256), D. longicatena (JCM 11232),
B. hydrogenotrophica (JCM14656), Blautia producta (BP,JCM1471), Cop-
rococcus comes (JCM31264), Faecalibacterium prausnitzii (JCM 31915),
Flavonifractor plautii (JCM 32125), Clostridium spiroforme (JCM1432),
Coriobacterium glomerans (JCM 10262), Roseburia hominis (JCM
17582), Adlercreutzia equolifaciens subsp. equolifaciens (JCM 14793),
Eggerthellalenta (JCM 9979) and Collinsella aerofaciens (JCM10188).
Allstrains were obtained from RIKEN BioResource Research Center. All
ofthe strains were cultivated in EGmedium (JCM Medium No. 14) sup-
plemented with 5% Fildes extract prepared by pepsin-digested horse
bloodinstead of horse blood itself. For measurement of metabolitesin
bacterial culture, 60 pl of the bacterial culture growninthe EG medium
wasinoculatedinto3 mlofthe experiment medium (EG medium) and
cultivated for 24 h. The samples were centrifuged, and the cell-free
supernatant was collected for analysis. GC-MS was performed to
measure hydrophilic metabolites as described above. We identified
261 metabolites by the analysis and used 198 metabolites observed in
atleast 30% of samples for the following analyses.

Animal experiments

C57BL6/N male mice aged 6 weeks were purchased from CLEA Japan.
They were randomly assigned to either the control or treatment
group and housed in a conventional animal facility of Yokohama City
University. The mice were fed Quick Fat (CLEA Japan) for 3 weeks before
bacterial administration and continued to be fed for 3 weeks during bac-
terial challenges. A. indistinctus (JCM16068), A. finegoldii (JCM16770),
B.thetaiotaomicron (JCM 5827), B. xylanisolvens (JCM15633), P. merdae
(JCM9497), F. prausnitzii (JCM 31915) and C. spiroforme (JCM1432) were
used to broadly compare the efficacy of bacterial administration on the
animal model. These strains were cultivated in EG medium overnight,
and the concentration was adjusted to 2.5 x 108 CFU per ml by PBS.
The bacteria and PBS, a negative control, were orally administered to
the mice at a dose of 200 pl per mouse. The bacteria and PBS as the
vehicle control were provided 3 times a week for 3 or 4 weeks. Body
mass was measured before oral gavage. Postprandial blood glucose
measurement and insulintolerance test were performed 3 weeks after
the initiation of bacterial challenges. After the insulin tolerance test,
the mice were subjected to 5 h fasting before insulin injection, and
0.85 U kg™ human regular insulin (Eli Lilly) was subsequently adminis-
teredintraperitoneally. The intraperitoneal glucose tolerance test was
performed 4 weeks after the initiation of bacterial challenges. The mice
were subjected to 5 hfasting before glucose infusion, and 2.0 g per kg
glucose (Nacalai Tesque) was administered intraperitoneally. Inboth
experiments, the blood glucose was collected from the tail vein and seri-
ally measured using GLUCOCARD G Black (Arkray). For the necropsy,
the mice were euthanized by isoflurane (MSD), and the fat mass of per-
igonadal and mesenteric fats was measured. Blood was drawn through
cardiac puncture after the anaesthesia. HDL-C (Wako), triglycerides
(Wako) and adiponectin (Otsuka) were measured in accordance with
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the manufacturers’instructions. The Yokohama City University animal
facility is maintained under a12 h-12 h light-dark cycle at 24 +1.5°C
and 55 +10% humidity.

To assess the metabolism, dietary intake and locomotor activity of
mice, C57BL6/N male mice at the age of 6 weeks were purchased from
CLEAJapan and were maintained inavinylisolator of SPF animal facility
at RIKEN Yokohama branch. Using the same experimental protocol in
the conventional condition, the mice were fed Quick Fat (CLEA Japan)
for 3 weeks before bacterial administration and continued to be fed
the diet during bacterial challenges and metabolic measurement.
We gave three oral gavages of A. indistinctus or PBS (vehicle control)
every other day and then placed the mice individually inacrylic cages.
We further gave one oral gavage 2 days after the start of individual
housing. Their metabolic activity, dietary intake and physical activity
were subsequently monitored. There was no significant difference in
body mass at the start of metabolic measurement (mean + s.d. of body
masswere 25.7 + 2.6 gand 26.1 + 1.4 gin the vehicle and A. indistinctus
groups, respectively). Oxygen and carbon dioxide concentration was
measured using the ARCO-2000 system, an open-circuit metabolic gas
analysis system with a mass spectrometer (Arco Systems). VO,, VCO,,
energy expenditure, fat oxidation rate, carbohydrate oxidation rate
and respiratory quotient were calculated within the system. Dietary
intake and physical activity were simultaneously monitored through
ACTIMO-100M and MFD-100M (Shinfactory). The differencesin diurnal
variation were tested using two-way mixed ANOVA, and P values for
interactions between time and group were reported. The RIKEN animal
facility is maintained under a12 h-12 h light-dark cycle at 23 + 2 °C
and 50 +£10% humidity. The sample size was determined on the basis
of our preliminary experiments. Bacterial administration and body
mass measurements were performed by anindependent researcher
who was not involved in the grouping and outcome assessments. All
experimental procedures were approved by the Institutional Animal
Care and Use Committee of the RIKEN and Yokohama City University
and performed in accordance with the institutes’ guidelines.

Western blot analysis of phosphorylated AKT

Toanalyse phosphorylation of AKT (p-AKT) at Ser473, the mice admin-
istered with A. indistinctus, A. finegoldii and PBS (vehicle control)
3times aweek for 4 weeks were subjected to 6 hfasting before the insulin
injection, and 0.85 U kg™ human regular insulin (Eli Lilly) was subse-
quently administered fromtheinferior venacava. Theliver, epididymal
fat (eWAT) and gastrocnemius muscle were subsequently collected
5 min after the insulin injection, weighed and snap-frozen by liquid
nitrogen. To prepare the lysates for western blotting, the tissues were
homogenized in buffer A (25 mM Tris-HCI, pH 7.4,10 mM sodium ortho-
vanadate, 10 mM sodium pyrophosphate, 100 mM sodium fluoride,
10 MM EDTA, 10 mM EGTA and 1 mM phenylmethylsulfonyl fluoride).
Thereafter, the lysates were resolved on 10% SDS-PAGE. Phosphoryl-
ated or total protein of AKT was isolated by immunoblotting using
specific antibodies after the tissue lysates were resolved by SDS-PAGE
and transferred to a Hybond-P PVDF transfer membrane (Amersham
Biosciences). Bound antibodies were detected with HRP-conjugated
secondary antibodies using ECL detection reagents (Amersham Bio-
sciences). Rabbit polyclonal antibodies directed against AKT and p-AKT
(Ser473) were purchased from Cell Signaling Technology. Precision
Plus Protein All Blue Standards (Bio-Rad) were used for the molecular
mass markers.

Hyperinsulinaemic-euglycaemic clamp test

The protocol has been published elsewhere®%*. Mice administered with
A.indistinctus or PBS (vehicle control) for 5 to 6 weeks were used for the
experiment. Jugular vein catheterization was performed 1 day before
the clamp test. In brief, a mouse was anaesthetized with isoflurane
(MSD), and the rightjugular vein was exposed. A double-channel cath-
eter was subsequently inserted to the vein. The next day, the mice were

subjected to 4 h fasting before the clamp test. Human regular insulin
(Eli Lilly) was intravenously administered at 7.5 mU kg™ min™, and the
blood glucose levels were monitored every 5 minfor120 min.50% glu-
cose solution containing 6,6-d,-glucose (Sigma-Aldrich) was simultane-
ously infused to keep blood glucose levels around 100 to 120 mg dI™.
To separate the plasma, approximately 25 pl of blood was also drawn
from tail vein at 0, 90, 105 and 120 min, placed into a tube containing
2 plof heparin (Mochida Pharmaceutical) and centrifuged at 12,000g
at4 °Cfor 5 min. The plasmalevels of glucose and 6,6-d, glucose were
measured using GC-MS. Inbrief, a5 plaliquot of plasma was extracted
and derivatized with methoxyamine hydrochloride (Sigma-Aldrich)
and N-methyl-N-(trimethylsilyl)trifluoroacetamide (GL Sciences), as
previously described*t. The analysis was performed using a GC-MS/
MS platform on a Shimadzu GCMS-TQ8040 triple quadrupole mass
spectrometer (Shimadzu) with a capillary column (BPX5) (SGE Analyti-
cal Science/Trajan Scientific and Medical). The programme of GC-MS/
MS analysis was previously described*® with minor modifications. We
integrated each derivative peak to obtain massisotopomers of glucose
for the following ions: m/z319.1,320.1and 321.1. The glucose infusion
rate was determined as the infusionrate at 90,105and 120 min. Therate
of glucose disappearance was determined on the basis of the plasma
levels of 6,6-d,-glucose and total glucose using anon-steady-state equa-
tion as described previously®*** and considered as the whole-body
glucose disposal after insulin stimulation. Hepatic glucose production
was determined as the subtraction of glucose disappearance rate and
glucose infusion rate.

Analysis of triglyceride contentsin the liver

For the necropsy, the mice were anesthetized using isoflurane (MSD),
and the left half of liver was dissected, weighed and frozen in liquid
nitrogen. The extraction of triglyceride contents from the liver tissue
has been reported elsewhere®*®*. In brief, the samples were homog-
enized inbuffer A (25 mM Tris-HCl at pH 7.4,10 mM sodium orthovana-
date, 10 mM sodium pyrophosphate, 100 mM sodium fluoride, 10 mM
EDTA,10 mM EGTA and1 mM phenylmethylsulfonyl fluoride) and mixed
with chloroform/methanol (2:1, v/v). The mixture was shaken for 15 min,
centrifuged and the organic layer was collected. The extraction step
was repeated three times. The collected samples were evaporated
andresuspended in1% Triton X-100/ethanol. The triglyceride content
was assessed using Triglyceride E-test Wako (Wako) according to the
manufacturer’s instructions.

Statistical methods and comparisons

For general statistical comparisons, two-sided Wilcoxon rank-sum tests
were used for two-group comparisons, Kruskal-Wallis tests followed
by Dunn’s post hoc analysis were used for comparisons of more than
two groups, and Fisher’s exact tests were used for comparison of cat-
egorical variables. For general correlation analyses, Spearman’s rank
correlationin the function corr.test of the R package psychv.2.1.6 was
used. For partial correlation analyses, partial Spearman’s rank correla-
tioninthe function pcor.test of the R package ppcor v.1.1was used. To
predict the metabolite levels and their CAGs (Fig. 1b,d and Extended
DataFigs.2c,d and 3a), rank-based regression analyses were performed
using the function rfit of the R package Rfit (v.0.24.2)%. For the ordi-
nal independent variables (that is, IR, MetS, and original categories
with obese and prediabetes), IS, no MetS, and healthy categories were
considered as the references, respectively, and the coefficients and
Pvalues for other categories were calculated against these reference
categories. For the analyses involving generalized linear models (GLM)
such as Fig. 2b and Extended Data Figs. 5iand 6c, the dependent vari-
ableswere assumed to follow a Gammadistribution and arcsine square
root transformation was applied to the relative-abundance values of
microbiota and KEGG orthologues. To enhance comparability, the
standardized coefficient was also calculated by standard deviations of
dependent andindependent variables using the function Im.beta of the



R package QuantPsycv.1.5in Extended DataFig. 5i. In the reanalysis of
TwinsUK data, we fitted generalized linear mixed-effects models with
age, sex, zygosity and BMl as fixed effects and sample collection year as
arandomeffect using the function glmer of R package Ime4 v.1.1-27.1to
estimate the associations between HOMA-IR and faecal carbohydrate
metabolites (Extended Data Fig. 3b,c). Similarly, in the reanalysis of
HMP2 data, we fitted a generalized linear mixed-effects model with
consent age and sex as fixed effects and sample collection site as a
random effect to estimate the associations between BMI and faecal
fructose, glucose and/or galactose (Extended Data Fig. 3d). To analyse
the associations between the participants’ clusters and clinical mark-
ersin Fig. 2b, the clusters were reordered before regression analyses
according to their proportion of individuals with IR, where cluster C
showing the lowest proportion of IR was set as the reference. To cal-
culate the KEGG pathway enrichment associated with the participant
clusters (Fig. 2e and Extended Data Fig. 6a,b), the KEGG orthologues
were compared between each cluster and the remaining three clusters
using atwo-sided Wilcoxon rank-sum test, and significant (P,4; < 0.05)
KEGG orthologues were summarized into the pathway level (Supple-
mentary Table 16). For comparison of metabolitesin bacterial cultures
(Extended Data Fig. 8), one-way ANOVA followed by Tukey’s post hoc
test was performed, followed by multiple testing corrections based on
the Benjamini-Hochberg procedure. For comparisons of time-series
datasuchasinsulintolerance test, two-way repeated-measures ANOVA
was used and the between-group difference was analysed by estimated
marginal means. P < 0.05was considered to be significant. To analyse
the body mass change in animal experiments, ANCOVA analysis was
performed to adjust baselinebody mass (thatis, body mass change asa
dependentvariable and group and baseline body mass asindependent
variables). We also validated the assumption of this ANCOVA model,
that is, homogeneity of regression slopes, homogeneity of variances
and normality of residuals. For multiple-testing corrections, Pvalues
were corrected using the Benjamini-Hochberg procedure using the
R function p.adjust. P,4 < 0.05 was used as a cut-off unless otherwise
specified. All data were collected using Microsoft Excel 2016. All sta-
tistical and graphical analyses were conducted using R v.4.1.1using R
studio v.1.4.1717, unless otherwise specified.

ROC curve analysis of omics datasets

Toanalyse ROC curves of omics datasets, the datasets of faecal metabo-
lomics, including hydrophilic and lipid metabolites, faecal 16S rRNA
gene sequencing at the genus level, faecal metagenome consisting
of KEGG orthologues and clinical metadata, were included. We first
selected feature variables in each dataset, that is, the best explaining
variables in the given dataset, using the minimum redundancy maxi-
mum relevance (mRMR) algorithm®, The function mRMR.classic of the
R package mRMRe v.2.1.2.1 was used for the calculation. The datasets
were square-root-transformed before mRMR calculation. We selected
5to 50 variablesin Sincrements as the maximum number of generawas
50. Using the selected variables, we next established random-forest
models using the R package caret v.6.0-88 to classify the individuals
into IR or not. Specifically, the results of mRMR were split into train
and test datasets in a 3:1ratio. The generated random-forest models
were evaluated using a tenfold cross-validation method and applied
to the test datasets to obtain probability scores. The accuracy of each
classification model was described by the AUC of ROC curves using
the R package pROCv.1.17.0.1.

Construction of microorganism-metabolite networks

To construct the co-abundance networks of genus-level bacteria, we
selected 28 genus-level microorganisms that were observed in more
than 40% of the participants and calculated the correlations using
the R package CCREPE (compositionality corrected by renormaliza-
tionand permutation)®®v.1.28.0 with Spearman’s correlations and the
defaultsettings. Interactions with P, < 0.05 were selected for further

analysis. Bacteria that exhibited a positive correlation with one another
were determined to be members of anindependent co-abundance
microbial group, except for the interaction between Bacteroides and
Robinsoniella. We decided to categorize Robinsoniellainto the Blautia
and Dorea group owingtoits stronger correlation with Blautiain com-
parison to Bacteroides, both of which showed the highest centrality
within their respective networks. Those weakly associated with each
other or negatively associated with the members of other CAGs were
classified as miscellaneous (Extended Data Fig. 5f). To characterize
the microbial profiles of the study participants, the individuals were
clustered on the basis of the abundance of 28 genera, which includes
20 generain co-abundance microbial groups identified with CCREPE
and 8 unclustered genera, using the ward.D function of the R package
pheatmap v.1.0.12. Four distinct clusters of participants were deter-
mined, and the proportion of IR was compared using Fisher’s exact
tests. Microorganism-metabolite networks were constructed on the
basis of the correlations between the 28 genera observed in at least
40% of samples and the faecal metabolites, including all hydrophilic
metabolites (n =110) and bacteria-related lipid metabolites (n = 259).
Bacteria-related metabolites were defined according to previous
reports®®?, The following classes were selected: DGDG, PE-Cer, MGDG
O, FAHFA, Cer-AS, Cer-BDS, NAGly, NAGlySer, PI-Cer, SL, AcylCer, bile
acids, DGDG O and AAHFA. Positive and negative Spearman’s correla-
tions with P,4; < 0.05 were separately depicted in the networks. The
networks were visualized using Cytoscape (v.3.7.0)%".

Construction of cross-omics networks

To construct and visualize a correlation-based network of omics data,
we firstanalysed IR-associated host signatures using plasma cytokines,
plasma metabolites and CAGE promoter expression data. We identified
the significant host markers through the following models: (1) GLM
withagammadistribution: HOMA-IR as adependent variable and host
markers, age and sex as independent variables; (2) logistic regression
model: IR (HOMA-IR >2.5=1, HOMA-IR <1.6 = 0) as a dependent vari-
able and significant host markers in the model 1, age and sex as inde-
pendent variables. In both models, host markers with P,;;< 0.05 were
considered tobesignificant. We finally identified 6, 21 and 36 significant
associations from plasma cytokines, plasma metabolites and CAGE
promoter expression data, respectively (Supplementary Tables 19-21).
In terms of bacteria, 20 genera with significant interactions between
each other, which were identified with CCREPE as shown in Extended
DataFig. 5f, were included. Interms of faecal metabolites, 15 carbohy-
drates associated with IR in the CAG analysis as shown in Fig. 1b were
included. Pairwise partial Spearman’s rank correlations adjusted by age,
sex, BMland FBG between all given factors were calculated with the R
package ppcorv.1.1. The correlations with P,4; < 0.05 were selected for
visualization. The size of nodes was determined as the ratio of median
abundancein IR overIS. As the median values of genera Robinsoniella
and Rothia were zero, these elements were removed from the visualiza-
tion. The width of lines was determined as the absolute value of partial
Spearman’s coefficient. The networks were visualized using Cytoscape
v.3.7.0.asinthe microorganism-metabolite networks described above.

Explained variance of plasma cytokines by omics data

To assess the explained variance of ten plasma cytokines, we estab-
lished random-forest models using the R package caret v.6.0-88 to
predict the plasma cytokine levels using 15 IR-associated faecal car-
bohydrates identified in Fig. 1b; 20 genera with significant interac-
tions with each other that were identified in Fig. 2a; 21 IR-associated
plasma hydrophilic metabolites (Supplementary Table 20); or 36
IR-associated CAGE promoters (Supplementary Table 21). Plasma
cytokines were log,,-transformed and scaled before the regression
analyses. The data were splitinto train and test datasets at a 4:1 ratio.
The generated random-forest models were evaluated using a tenfold
cross-validation method and applied to the test datasets to obtain
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predictions. The explained variance shown as R* was calculated as its
definition: 1 - sum(test — predict)’/sum(test — mean(test)). The nega-
tive values were considered as zero.

Causal mediation analysis

To infer the effects of plasma cytokines on in silico causal relation-
ships between faecal carbohydrates and IR markers (HOMA-IR, BMI,
triglycerides and HDL-C), we performed causal mediation analysis using
the R package mediation (v.4.5.0)*. As previously reported®®, we first
screened significantassociations (P,4; < 0.05) between 15 IR-associated
faecal carbohydrates and four IR markers, and significant associations
between ten plasma cytokines and four IR markers. Age and sex were
included asindependent variablesin both models. We then performed
causal mediation analyses with the following models: (1) Mediator
models: cytokine - metabolite + age + sex; (2) outcome models: IR
marker - metabolite + age + sex + cytokine. Inboth models, faecal car-
bohydrate and plasma cytokine values were scaled before the analy-
ses, and GLM with Gaussian distribution was used. A nonparametric
bootstrap procedure was used to calculate the significance, followed
by multiple testing corrections using the R function p.adjust. Average
causal mediation effects and average direct effects with P, values from
representative models arereported in Extended DataFig. 7d, whereas
all of the results including the total effects and proportion mediated
arereported in Supplementary Table 23.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw sequencing data of faecal microbiota have been deposited at the
DNA Data Bank of Japan’s BioProject (https://www.ddbj.nig.ac.jp/
bioproject/index-e.html) under accession number PRJDB11444. Raw
metabolomic data have been deposited at the RIKEN DROP Met (http://
prime.psc.riken.jp/menta.cgi/prime/drop_index) underindex number
DMO0O037. Raw CAGE sequencing data are deposited at the Japanese
Genotype-phenotype Archive of National Bioscience Database Center
(https://humandbs.biosciencedbc.jp/en/) under accession number
JGAS000569. The following publicly available databases were used in
this study: Ribosomal Database Project (https:/www.canr.msu.edu/
cme/resources#:~:text=RIBOSOMAL%20DATABASE%20PROJECT,)),
CORE (http://microbiome.osu.edu/), a reference genome sequence
database obtained from the NCBI FTP site (ftp://ftp.ncbi.nih.gov/
genbank/, December 2011), UCLUST (http://www.drive5.com/), the
KEGG Orthology database (https://www.genome.jp/kegg/ko.html),
glycoside hydrolase family classificationin the CAZy database (http://
www.cazy.org/Glycoside-Hydrolases.html), the Inflammatory Bowel
Disease Multi'omics Database (https://ibdmdb.org/) and the Human
Gene Atlas Database associated with Enrichr (https://maayanlab.cloud/
Enrichr/). Source data are provided with this paper.
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Study participants (N = 306)
Japanese, age 20-75

No treatment for diabetes
No treatment for intestinal diseases
No prior use of antibiotics in two weeks

AN NA NN

Clinical phenotypes

Fecal metabolite analysis
v Clustering based on co-abundance (CAGs)
v Hydrophilic: 18 CAGs
v Lipid: 108 CAGs

Host inflammatory phenotypes
in IR and MetS

v Pro and anti-Inflammatory cytokines

v PBMC gene expressions and cell type gene
set enrichment analysis

v Plasma metabolites associated with energy
metabolism

v Insulin resistance (IR)
v' Metabolic syndrome (MetS)

Host Microbiota

Clinical data
41

1. Microbial signature in IR and MetS

1

}

S (Species)
‘ 2
Predicted genes
6,458,217

Lipid metabolites
635

Fecal microbiota analysis
v/ 16S: 28 core genera (detected in > 40%) and
4 co-abundance groups by CCREPE
v' Metagenome: 6,711 KEGG orthologue

2. Host-microbe-metabolite interactions

v Network analysis using partial Spearman’s
correlation corrected by age, sex, BMI and
fasting blood glucose

v Causal mediation analysis to assess whether
cytokines mediate the relationship between
fecal metabolites and metabolic markers.

Extended DataFig.1| Overview of multi-omics analysis and data.

a, Individuals without a prior diagnosis of diabetes, diabetic medications,
orintestinal diseases wereincluded (n =306). Insulin resistance (IR) and
metabolic syndrome (MetS) were the main clinical phenotypes. To evaluate
the host-microberelationship, we collected 1) host factors: clinical, plasma
metabolome, peripheral blood mononuclear cells (PBMC) transcriptome, and
cytokine data, and 2) microbial factors:16S rRNA pyrosequencing, shotgun
metagenome, and faecal metabolome. The numbers of elements after quality
filtering are shown for each dataset. b, The multi-omics analysis workflow. To
identify the microbes that affect metabolic phenotypes, we firstanalysed the
phenotype-associated metabolomic signatures by binning metabolitesinto

3. Validation of candidate bacteria/metabolites via experimental models

v Bacterial culture experiments using human-derived fecal microbes
v Diet-induced obese mice provided IS-associated microbes

co-abundance groups (CAGs). Microbial signatures were determined using the
16S and metagenomic datasets, and their associations with metabolites were
analysed. Togaininsightinto the host-microbe relationship, the associations
among faecal metabolites/microbes and host plasma metabolites, cytokines,
and PBMC genes were analysed. We also assessed the mediation effects of
plasma cytokines on the relationships between faecal metabolites and
metabolic markers. Finally, to validate the effects of candidate metabolites/
microbes onmetabolic phenotypes, we performed bacterial culture and
animal experiments. The associations between clinical phenotypes and omics
markers were adjusted by age and sex wherever appropriate.
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Extended DataFig. 2| Faecal carbohydrate metabolites areincreasedin
IRand MetS. a, The KEGG pathway enrichment analysis of the metabolitesin
hydrophilic CAGs 5, 8,12,15,and 18, which were associated with IR in Fig. 1b.
Thesize of disks shows the enrichment (i.e., the ratio of observed numbers and
expected numbers of metabolitesin each KEGG pathway). The pathways with
raw Pvalues<0.05areshowninthefigure.b, Partial correlations between
HOMA-IR and faecal levels of short-chain fatty acids (SCFA) such as acetate,
propionate, and butyrate (left panel), and disaccharides such as maltose and
sucrose (right panel). The coefficients (pSC) and Pvalues of partial Spearman’s
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correlations adjusted by age and sex are described (n =282). c, Faecal levels

of SCFA (left panel) and disaccharides (right panel) were compared between
no MetS, pre MetS, and MetS (n=306).d, Faecal levels of monosaccharides
(left panel), SCFA (middle panel), and disaccharides (right panel) were
compared between healthy, obese, and prediabetes (n=306). Density plots
indicate median and distribution. *P,4;< 0.05,**P,4;< 0.01,***P,4; < 0.001;
hypergeometric test with multiple test corrections (a) and rank-based linear
regression adjusted by age and sex (¢, d). The detailed statistics are reportedin
Supplementary Table5, 6.
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faecal fructose/glucose/galactose and BMIin non-IBD individuals aged > 10
yearsoldinthe HMP2 cohort (n =16). The datawere analysed with ageneralized
linear mixed-effect model with consent age and sex as fixed effects, and the
sample collectionsite asarandomeffect. Theline and grey zone show the
fitted linear regression lines witha 95% confidence interval. The estimate and
Pvaluearedescribed. The first faecal sampling for metabolomics was used to
avoid redundancy. Density plots indicate median and distribution.*P<0.05,
**P<0.01;rank-based linear regression adjusted by age, sex, and zygosity

(a) and generalized linear mixed-effect models with age, sex, zygosity, and BMI
asfixed effects,and sample collection year as arandom effect (b). The detailed
statisticsarereportedin Supplementary Table9.
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Extended DataFig. 4 | Faecal DGDG and their precursors. a, The associations between the faecal levels of digalactosyl/glucosyldiacylglycerols (DGDGs) in lipid
CAG11fromFig.1b, and their precursor DGs (left panel) and monosaccharides, i.e., glucose and galactose (right panel) (n = 282).
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Extended DataFig. 5| See next page for caption.
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Extended DataFig. 5| Faecal microbiotainIR. a, b, Chaoland Shannon’s
alphadiversityindicesin IR and MetS (n =282). ¢, d, PCoA plots of Bray-Curtis
dissimilarity, showing the variations of faecal microbiota at the genus level
based on16S rRNA gene sequencing (c), and at the species (mOTU) level based
onshotgunsequencing (d), clustered by IR or MetS (n=282). Dots represent
individual datasummarizedinto PColand PCo2.e, PCA plots showing the
variations of KEGG orthologues based on shotgun metagenomic sequencing
clustered by IRor MetS (n=266). Dots represent individual datasummarized
intoPCland PC2.f, Co-abundance groups of genus-level microbes and their
abundancein the participantclusters definedin Fig. 2a. Co-abundance was
determined based on compositionality-corrected Spearman’s correlations,
withP,4;<0.05 considered significant. The disk size represents the median
abundancein the participants. Three co-abundance groups were determined
based on their networks, while the rest of the microbes were named as
“miscellaneous”. g, The co-abundance groups of genus-level microbes

and their abundancein the participant clusters. Those not clustered by
compositionality-corrected Spearman’s correlationsin fwere shown as
“Unclustered”. The size of the disks represents overabundance to the mean
infour clusters of participants determined in Fig. 2a. The far-left column
shows the genera that exhibit significant differences among the four clusters.
h, The co-abundance clusters of microbes at the genus level using the shotgun

metagenomic dataand theirabundance (n=266). The generaforming distinct
groupsinf,i.e.,groups1,2,and3, wereincludedin this analysis. The participants
were clusteredinto threemOTU clusters Ato Cbased onthe heatmap clustering.
The proportion of individuals with IS, intermediate, and IR are shownin the pie
chartsabove the heatmap as Fig. 2a.i, The associations betweenrepresentative
metabolic markers and genera (left panel, n =282) and mOTU (right, n = 266).
Only those with significant associations with metabolic markers are depicted.
Thedisk size and colour represent absolute values of standardized coefficient
and thedirection of associations. The detailed statistics arereported in
Supplementary Table11. j, Microbe-metabolite networks of IR-or and IS-
associated co-abundance microbial groups from Fig.2a and faecal metabolites
(n=282). Allfaecal hydrophilic metabolites and faecal microbe-related lipid
metabolites wereincluded in the analysis. Only those with negative Spearman’s
correlation between the genus-level microbial abundance and the metabolites
withP,4;<0.05are shown, whichis complementary toFig. 2c. The metabolites
inCAGsrelating to carbohydrates shownin Fig.1b are highlightedinred. k, The
relative abundance of IR-associated faecal carbohydratesin the participant
clusters. The metabolites significantly different among these four clusters are
colouredgreyinthe top row. a, b, Box plotsindicate the median, upper and
lower quartiles, and upper and lower extremes except for outliers. Kruskal-
Wallis test (g, k). See the Source Data (g) for exact Pvalues.
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Extended DataFig. 6 | See next page for caption.
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Extended DataFig. 6 | Microbial carbohydrate metabolismis alteredinIR.
a,b, The associations between the KEGG pathways relating toamino acid
metabolism (a) and lipid metabolism (b), faecal carbohydrates, top three
generapositively or negatively correlated with faecal carbohydratesin Fig. 2d,
and the participant clusters defined in Fig. 2a. KEGG orthologues significantly
(P,4;<0.05) associated with the metabolite (left) and taxonomic abundance
(right) are summarized as percent enrichment among the KEGG pathways. The
median % of 15 faecal carbohydrates are coloured in the left panel whereas %
enrichmentis depicted as the disk sizein the right panel. The Spearman’s
correlations between pathway-level abundance and 6 generawere analysed
inthe middle panel (n=266).c, Theassociations betweenrepresentative
metabolic markers and the KEGG pathways relating to carbohydrate metabolism,
amino acid metabolism, lipid metabolism, and membrane transport defined
inthe KEGG orthology database. The pathways with significant associations
with metabolic markersareincludedin the plots. The disk size and colour
represent % enrichment and the direction of associations, and only significant
(P,4;<0.05) associations are depicted (n=266).d, Spearman’s correlation
between KEGG orthologues associated with phosphotransferase system
(PTS) and faecal carbohydrate metabolites. KEGG orthologues significantly
(P,4j<0.05) associated with faecal metabolites are coloured red or blue
(n=266).The far-left columnshows the type of carbohydrate metabolites

thateach PTS geneisinvolvedin.e, The abundance of representative KEGG
orthologuesinvolvedin PTS were compared among four participant

clusters (n=266). The abundance was transformed by arcsine square root
transformation. f, Spearman’s correlation between KEGG orthologues
significantly associated with glycoside hydrolasesin starchand sucrose
metabolism (KEGG pathway #00500) and faecal carbohydrate metabolites
(n=266). The far-left column shows whether the genes were predicted to
function as extracellular enzymes. g, Representative pathwaysin starchand
sucrose metabolism (KEGG pathway #00500) relating to glycosidase activities
to degrade poly-and oligosaccharides into monosaccharides. h, Theabundance
of representative KEGG orthologuesinvolved in glycosidase were compared
among four participant clusters (n =266). The abundance was transformed by
arcsine squareroot transformation. i, The presence and absence of KEGG
orthologues predicted to function as extracellular enzymesin 45 strains. The
strains from the top three genera positively or negatively correlated with faecal
carbohydrates showninFig.2d, i.e., Bacteroides, Alistipes, Flavonifractor,
Dorea, Blautia, and Coprococcus, were included in this analysis. Density plots
indicate medianand distribution (e, h). *P < 0.05, **P < 0.01, ***P < 0.001in
comparisonto cluster C (with the lowest proportion of IR); Kruskal-Wallis test
with Dunn’stest (e, h) (Supplementary Table 18).
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Extended DataFig. 8 | Bacteroidales strains distinctly alter metabolites
inthe culture supernatant.a, b, PCA plots of metabolitesin cell-free
supernatants of 22 bacterial strains listed in (a). These strains were selected
based onthe findings from the genus-level co-occurrence (Fig. 2a, b) and the
species-level profiles (Extended Data Fig. 5i). The strains from genera and
speciesrelating to IR-related markers shown in Extended DataFig. Siare
particularly highlighted in boldface. The top 10 metabolites contributing to
the PCA separation (left panel) and 13 out of 15IR-related carbohydrates

identified in Fig. 1b (right panel) are biplotted on the PCA plot, respectively (b).

c,d, Thelevels of carbohydrate fermentation products (c) and carbohydrates
relatingto IR inthe human cohort (d) in the cell-free supernatants. e, Pie charts
summarizing the consumption and production of carbohydrates shownin (d).
Those significantly decreased orincreased compared with the vehicle control
group were considered as consumption or production. f, The top consumers
of carbohydrates, which summarizes the resultsshownin (e). Representative
dataoftwoindependent experiments.c,d, Dataare mean ands.d. The detailed
statistics arereported in Supplementary Table 24 (n =3 per group).
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Extended DataFig. 9 |See next page for caption.
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Extended DataFig.9 | Alistipesindistinctus ameliorates IR.a, Body mass
change fromthe baseline. The Pvalue adjusted by baseline body mass by
ANCOVA are shown (n=25and 26 for control and A. indistinctus (Al) groups,
respectively. Pooled data of three independent experiments). b, TG contentsin
theliver (n=12and 14 for control and Al groups, respectively. Pooled data of
twoindependent experiments).c,d, Theblood glucoselevels (c) and AUC
(d)inintraperitoneal glucose tolerance test (IPGTT) (n=5and 4 for control
and Algroups, respectively). e-g, Serumlevels of HDL-cholesterol (HDL-C, e),
triglycerides (TG, f), and adiponectin (g) (n=5pergroupineandf,n=8 per
grouping). h, Glucose infusion rate (GIR) during hyperinsulinemic-euglycemic
clamp (n=7pergroup). Therates at 90,105, and 120 min after the start of
insulininfusion were shown as representative of steady-state conditions of
euglycemia.i,j, Whole-body glucose disposal rate (Rd, i) and hepatic glucose
production (HGP, j) measured with hyperinsulinemic-euglycemic clamp (n=7
pergroup).k, I, Representative images of phosphorylated Akt (p-Akt) at S473

and total Aktinthe liver and epidydimal fat (¢WAT) in mice administered Alistipes
indistinctus (Al), Alistipes finegoldii (AF), and PBS as vehicle control (k). The
protein expression of p-Akt was normalized to that of total Akt (n=4vs5vs 5) (I).
Therawimages of blotting membranes are shownin Supplementary Fig. 1
(n=3pergroup). m-o0, Respiratory quotient (RQ) and carbohydrate oxidation
rate (m), dietintake (n), and locomotor activity (o) after one-week bacterial
administration (n=4and 5 for control and Al groups, respectively). Pvalues for
interactions between time and group are described in (m). Other metabolic
measuresare reportedin Supplementary Table 25. Representative data of two
independent experiments (c-g, k-0).a, Density plotsindicate median and
distribution.b-j,1, m, Dataare mean ands.d. ANCOVA (main panel) with
unadjusted linear regression (right panel) (a), two-sided Wilcoxon rank-sum
test(b,d-g, i,j), two-way repeated measure ANOVA (c), Two-way ANOVA (h) and
one-way ANOVA (I) with Tukey’s test, two-way mixed ANOVA (m), and Kruskal-
Wallis test (n, 0).
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Extended DataFig. 10 | See next page for caption.



Extended DataFig. 10| Alistipesindistinctusreduces intestinal
carbohydrates. a, PCA plots of metabolites in caecal contents of
Al-administered mice. The top 10 metabolites contributing to the PCA
separation (left panel) and 12 out of 15IR-related carbohydrates identified in
Fig.1b (right panel) are biplotted on the PCA plot, respectively (n =8 per
group).b, The PC1of PCA plotsin Fig.a (n =8 per group). ¢, Caecal levels of
representative IR-related carbohydrates observed in Al-administered mice
(n=8pergroup). The detailed statistics of all caecal metabolites are reported
inSupplementary Table26.d, Serum levels of fructose in Al-administered mice
(n=7and5for controland Algroups, respectively). e, Aschematic summary.
Inthis study, we combined faecal metabolome, 16S rRNA gene sequencing, and
metagenome datawith host metabolome, transcriptome, and cytokine data
tocomprehensively delineate the involvement of gut microbiotain IR (upper
panel). Carbohydrate degradation products such as monosaccharides are

prominentlyincreasedin IR (middle panel). Metagenomic findings show that
the degradation and utilization of poly- and disaccharides are facilitated in

IR and that these microbial functions are strongly associated with faecal
monosaccharides. Further analysis also suggests that the effects of these
metabolites on host metabolic parameters such as BMI are in part mediated by
specific cytokines. Finally, our animal experiments provide evidence showing
that oral administration of Al, acandidate strain selected based onhuman
cohortfindings, reduces intestinal carbohydrates and lipid accumulation,
thereby leading to the amelioration of IR (lower panel). Taken together, our
study provides novel insights into the mechanisms of host-microbe interplays
inIR.Representative dataof twoindependent experiments. b, Box plotsindicate
themedian, upper and lower quartiles, and upper and lower extremes except
foroutliers. c,d, Dataare mean ands.d. Two-sided Wilcoxon rank-sum test (b-d).
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genbank/, December 2011), UCLUST (http://www.drive5.com/), the KEGG ORTHOLOGY database (https://www.genome.jp/kegg/ko.html), glycoside hydrolase
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Sample size No sample-size calculation was performed. The sample size in human study was determined based on previous metagenomic studies showing
microbial signatures of diabetic patients (Qin, J. et al. Nature 2012, Karlsson, F. H. et al. Nature 2013). The sample size in experiments
involving animals and bacterial culture was determined to be adequate based on the magnitude and consistency of measurable differences
between groups based on previous reports and our preliminary experiments.

Data exclusions | One mouse with unsuccessful intravenous insulin injection was removed (Extended Data Fig. 9); otherwise no sample was removed from the
experiments.

Replication No replication in our human cohort, although the results were partly validated by other cohorts (TwinsUK and HMP2). All animal experiments
were replicated a minimum of two to three times, yielding consistent results. The hyperinsulinemic euglycemic clamp test (Extended Data Fig.
9) was conducted once to validate the findings of insulin tolerance tests, which were repeated three times and yielded consistent results. The

bacterial culture analyses were conducted twice and yielded similar results.

Randomization  The human participants were not randomized since this was a cross-sectional study. All of analyzed mice were randomly assigned to the
groups, and they were age- and sex-matched (6 weeks of age, male).

Blinding No blinding in the human sample analysis and animal experiments since these did not depend on investigator's observation and subjectivity.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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Human research participants
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Dual use research of concern

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6 mice (6 weeks of age, male) were purchased from CLEA Japan and maintained under a conventional animal facility at
Yokohama City University and RIKEN Yokohama Branch. The Yokohama City University animal facility is maintained in a 12-hour light
and dark cycle at 24 + 1.5°C and 55 + 10% humidity. The RIKEN animal facility is maintained in a 12-hour light and dark cycle at 23 +
29C and 50 + 10% humidity.

Wild animals No wild animals were used in this study.
Field-collected samples  No field-collected samples were used in this study.

Ethics oversight All experimental procedures were approved by the Institutional Animal Care and Use Committee of the Yokohama City University and
RIKEN and performed in accordance with the institutes’ guidelines.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

The study participants were recruited from 2014 to 2016 during their annual health check-ups at University of Tokyo Hospital
(Tokyo, Japan). The individuals included both male and female Japanese aged from 20 to 75 years old. The exclusion criteria
are as follow: Established diagnosis of diabetes, routine use of medications for diabetes and/or intestinal diseases, use of
antibiotics within two weeks prior to sample collection, and those who lost three kg of body weight in three months prior to
sample collection.

The study participants were widely recruited via brochures and posters before and at health-checkups. To normalize the
participants’ clinical characteristics, we planned to recruit roughly 100 normal, 100 obese (BMI > 25, based on the Japanese
definition), and 100 prediabetic (FBG > 110 mg/dL and/or HbAlc > 6.0 %) individuals based on their clinical data, and stopped
recruiting when the number of participants almost reached the goal. The sample size was determined based on previous
metagenomic studies showing microbial signatures of diabetic patients. We enrolled 112, 100, and 101 individuals for
normal, obese, and prediabetic groups, respectively. Among them, two individuals withdrew from the study after enrollment,
and five individuals did not provide fecal specimens. Given that we recruited participants from health-checkups, who are
typically regarded as individuals with a high level of health consciousness, there is a possibility of potential selection bias.

The study was approved by the institutional review board of RIKEN and The University of Tokyo and performed in accordance
with the institutes’ guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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