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BACKGROUND: Prenatal exposure to endocrine-disrupting chemicals (EDCs) may disrupt normal fetal and postnatal growth. Studies have mainly
focused on individual aspects of growth at specific time points using single chemical exposure models. However, humans are exposed to multiple
EDCs simultaneously, and growth is a dynamic process.
OBJECTIVE: The objective of this study was to evaluate the associations between prenatal exposure to EDCs and children’s body mass index (BMI)
growth trajectories using single exposure and mixture modeling approaches.
METHODS: Using data from the INfancia y Medio Ambiente (INMA) Spanish birth cohort (n=1,911), prenatal exposure to persistent chemicals [hex-
achlorobenzene (HCB), 4-4 0-dichlorodiphenyldichloroethylene (DDE), polychlorinated biphenyls (PCB-138, -150, and -180), 4 perfluoroalkyl sub-
stances (PFAS)] and nonpersistent chemicals (8 phthalate metabolites, 7 phenols) was assessed using blood and spot urine concentrations. BMI
growth trajectories were calculated from birth to 9 years of age using latent class growth analysis. Multinomial regression was used to assess associa-
tions for single exposures, and Bayesian weighted quantile sum (BWQS) regression was used to evaluate the EDC mixture’s association with child
growth trajectories.

RESULTS: In single exposure models exposure to HCB, DDE, PCBs, and perfluorononanoic acid (PFNA) were associated with increased risk of
belonging to a trajectory of lower birth size followed by accelerated BMI gain by 19%–32%, compared with a trajectory of average birth size and sub-
sequent slower BMI gain [e.g., relative risk ratio (RRR) per doubling in DDE concentration= 1:19 (95% CI: 1.05, 1.35); RRR for PFNA=1:32 (95%
CI: 1.05, 1.66)]. HCB and DDE exposure were also associated with higher probability of belonging to a trajectory of higher birth size and accelerated
BMI gain. Results from the BWQS regression showed the mixture was positively associated with increased odds of belonging to a BMI trajectory of
lower birth size and accelerated BMI gain (odds ratio per 1-quantile increase of the mixture= 1:70; credible interval: 1.03, 2.61), with HCB, DDE,
and PCBs contributing the most.

DISCUSSION: This study provides evidence that prenatal EDC exposure, particularly persistent EDCs, may lead to BMI trajectories in childhood char-
acterized by accelerated BMI gain. Given that accelerated growth is linked to a higher disease risk in later life, continued research is important.
https://doi.org/10.1289/EHP11103

Introduction
Infant and early childhood growth and adiposity status are impor-
tant factors in promoting healthy childhood development and
well-being during adulthood.1 Children with overweight or obe-
sity are more likely to continue in trajectories of excess weight
during adulthood,2 putting them at an increased risk for compli-
cations, including diabetes, cardiovascular disease, and increased
mortality.1–3

One risk factor of concern is exposure to endocrine-disrupting
chemicals (EDCs), given that they may predispose individuals to
develop obesity by interfering with normal endocrine function.4,5

Several EDCs are persistent and remain in the environment for many
years through bioaccumulation [e.g., some organochlorine com-
pounds (OCs), such as dichlorodiphenyldichloroethylene (DDE),
hexaclorobenzene (HCB), polychlorinated bisphenyls (PCBs), and
perfluoroalkyl substances (PFAS)].6 Others are nonpersistent (e.g.,
phthalates and phenols) and are metabolized quickly, but human ex-
posure is constant owing to their widespread use.7,8 Exposure to
EDCs occurs through the use of plastic convenience items, consump-
tion of food and water, and application of personal care products, to
name a few means.9,10 Exposure is particularly concerning for
pregnant women because many EDCs have been shown to transfer
in utero during a time period in which the fetus is particularly sen-
sitive to alterations in their normal hormone environment.11,12

Numerous EDCs, both persistent and nonpersistent, may interfere
with estrogenic, androgenic, glucocorticoid, and insulin signaling
pathways,13 leading to impacts on normal fetal and postnatal
growth14 and potentially resulting in increased disease susceptibil-
ity in later life.11,12,15

A number of studies have evaluated the impact of prenatal
EDC exposure on birth size and later body mass index (BMI) in
childhood, withmost of these focusing on just one or two groups of
EDCs,16–18 and only few including multiple EDCs from a wide
range of chemical families.19–22 Fewer studies have used growth
trajectories that integrate repeated measurements of fetal growth,
birth size, or postnatal growth over time.23–27 By integrating
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multiple measures of growth from early life onward, the more
dynamic aspects of growth can be captured, particularly during
the first 2 y of life, which is a period of exponential growth.28

Capturing both prenatal (via birth size) and postnatal growth is
important given that babies with high birth weight (>4,000 g)
and babies with low birth weight followed by accelerated growth
are at an increased risk for obesity during childhood,29 which can
negatively impact cardiometabolic risk factors.30 Studies that
modeled growth trajectories found that prenatal exposure to cer-
tain phthalates was associated with the highest predicted BMI tra-
jectories in a sex-specific manner from birth to 14 years of age,23

whereas prenatal DDE exposure was associated with increased
growth from birth to 2 years of age.25 Most recently, a prospec-
tive birth cohort study of 1,118 mother–child pairs from Sweden
found that prenatal exposure to a mixture of 41 EDC metabolites
was associated with lower birth size and subsequent delayed
growth from birth to 5 years of age.24 Given that children who ex-
perience accelerated growth have increased risks for chronic dis-
eases in adulthood, such as hypertension, cardiovascular diseases,
diabetes, and cancer,2,31–34 determining these childhood growth pat-
terns and their determinants may enable intervention during early
life, thus lessening future disease burden.

Studies evaluating the effects of prenatal EDC exposure on child
growth have mainly focused on individual aspects of growth at spe-
cific time points (e.g., birth size, BMI) using single chemical expo-
sure models. In real life, humans are exposed to multiple EDCs
simultaneously and growth is a dynamic process; however, to our
knowledge only one study24 has combined the use of a chemical
mixture with multiple growth measures (i.e., growth trajectories).
Therefore, the present study evaluated the associations between pre-
natal exposure to persistent and nonpersistent EDCs and children’s
BMI growth trajectories from birth to 9 years of age through single
exposure andmixturemodeling approaches.

Methods

Study Population
This study included 1,911 mother–child pairs from the INfancia y
Medio Ambiente (INMA) Spanish birth cohort study in Gipuzkoa
(n=556), Sabadell (n=659), and Valencia (n=696). Pregnant
women were recruited during the first trimester through regional
public hospitals between 2003 and 2008. The inclusion criteria
included being≥16 years of age, a singleton pregnancy, intention to
deliver at a reference hospital, and no assisted conception or com-
munication issues.35 Mother–child pairs were followed-up during
the third trimester, at birth, and at child ages 6 months and 1, 2, 4, 7,
and 9 y. Informationwas collected through questionnaires and clini-
cal examinations, including blood and urine samples35 Blood col-
lected during the first trimester was centrifuged to separate serum,
which was aliquoted into glass criotubes that were stored at −80�C.
Urine was collected in 100-mL polypropylene containers and ali-
quoted into 10-mL polyethylene tubes and stored at −20 �C. This
study was approved by the ethics review boards of the hospitals
involved, and mothers signed written consent for their and their
child’s participation.

Measurement of Chemicals
Concentrations of 24 metabolites were determined using maternal
serum, plasma, and urine samples taken during pregnancy.
Concentrations of organochlorines (OCs: 4,40-DDE, HCB, and
PCB-138, -150, and -180) were measured in first trimester mater-
nal serum samples. Samples were analyzed using gas chromatog-
raphy with electron capture detection [GC-ECD; 5890 series II
gas chromatograph equipped with split-splitless injector, ECD

detector, and a 7673 autosampler (Agilent Technologies)] at the
Gipuzkoa Basque Government Public Health Laboratory for
Sabadell and Gipuzkoa and the Institute of Environmental
Assessment and Water Research (IDAEA)/CSIC for Valencia,
as described previously.36,37 Because OCs are lipophilic, con-
centrations were adjusted for maternal total serum lipid content,
which was calculated from total cholesterol and triglycerides
measured through enzymatic techniques.38

PFAS concentrations [perfluorohexanesulfonic acid (PFHxS), per-
fluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and
perfluorononanoic acid (PFNA)] were analyzed in first trimester
maternal plasma samples. Samples were analyzed at the Institute
for Occupational Medicine, Rheinisch-Westfälische Technische
Hochschule (RWTH) Aachen University using column-switching
high-performance liquid chromatography (HPLC) (Agilent 1100
Series HPLC apparatus with an additional isocratic Agilent G
1310A pump) coupled to tandem mass spectrometry (MS-MS;
Sciex API 3000 LC-MS/MS system in electrospray ionization-
negativemode). This information has been previously described.39

Phthalate metabolites [mono-ethyl phthalate (MEP), mono-
iso-butyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono-
benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP),
mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), mono-2-ethyl-
5-oxohexyl phthalate (MEOHP), and mono-2-ethyl-5-carboxypentyl
phthalate (MECPP)] were measured at the Norwegian Institute of
Public Health (NIPH) for Gipuzkoa and Valencia using pooled urine
samples from the first and third trimesters (pooled in equal volumes)
with UHPLC-MS/MS (Triple Quad LC-MS/MS 6460 Series from
Agilent Technologies),40 and at the Hospital de Mar Medical
Research Institute (IMIM) for Sabadell using spot urine samples
taken separately during the first and third trimesters using ultraper-
formance LC-MS/MS (Waters Corp.).41 Phenols, including four par-
abens [methyl paraben (MEPA), ethyl paraben (ETPA), propyl
paraben (PRPA), and n-butyl paraben (BUPA)], bisphenol A (BPA),
benzophenone-3 (BP-3), and triclosan (TRCS) were measured at the
Biosanitary Research Institute ibs.GRANADA for Gipuzkoa using
pooled urine samples (first and third trimesters) using dispersive
liquid–liquid microextraction followed by UHPLC-MS/MS,42 and at
NIPH for Sabadell and Valencia using spot urine samples taken sepa-
rately during the first and third trimesters with on-line solid-phase
extraction followed by (UHPLC-MS/MS; Triple Quad MS/MS
6490; Agilent Technologies).43 Phthalate metabolites and phenols
were adjusted for variation in urinary dilution by creatinine. In all
cohorts, creatinine urine concentrations (derived from separate first
and third trimester samples and averaged for analyses) were deter-
mined using the Jaffé method (kinetic with target measurement, com-
pensated method; where a fixed concentration is subtracted from
each result, with the assumption that the noncreatinine chromogen in-
terference is constant between the samples), using a Beckman
Coulter reactive in AU5400 (IZASA).44 In cases where pregnant
women had only one sample from either the first or the third trimes-
ter, that one measurement was used as the average.

Details regarding laboratories, and limit of detection (LOD)
or quantification (LOQ) by cohort and sampling period can be
found in Tables S1–S3. For all concentrations, a value equal to
the LOD divided by 2 was set to samples with concentrations
below the LOD, and concentrations were transformed using the
base-2 logarithm to achieve more normal distributions.

Growth Trajectories
The growth trajectories usedwere calculated and already described
in previously published work.45,46 Briefly, repeated measurements
of each child’s height and weight were obtained from medical
records and measurements taken by trained INMA personnel.
Children were measured using standardized protocols, without
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shoes and in lightweight clothing. Age- and sex-specific BMI
z-scores were calculated using the World Health Organization
ChildGrowth Standards.47,48 BMI z-score trajectories (referred to as
BMI trajectories hereafter) were estimated using latent class growth
analysis (LCGA), specifically a latent class mixed model.45,49 Before
estimating the trajectories, we checked whether the relationship
between age and zBMIwas linear (using the gamm function from the
mgcv RStudio library to adjust a general additive mixed model). We
found that with 3 degrees of freedom we had a good age function to
modulate the relationship with zBMI. A possible of 2 to 7 trajectories
were tested to find the best number of trajectories to represent the
data. The method for selecting the best fit was based on Bayesian and
Akaike information criteria and, additionally, that the trajectories
foundweremeaningful (e.g., had frequency>10% and that the trajec-
tory displayed was distinct from the others). Ultimately, five distinct
BMI trajectories were identified as the best fit for our data. Each tra-
jectory included measurements taken from 0 to 9 years of age
(mean age= 9:9 y), with an average of 14.3 measurement points per
child. Detailed information on the RStudio package used and model
parameters can be found in Table S4. The trajectories differed in birth
size (defined as lower, average, or higher) and in BMI gain velocity
(defined as slower or accelerated) (Figure 1; Table S11). Based on
these definitions, the classes were labeled as follows: class 1, larger
birth size with subsequent accelerated BMI gain; class 2, larger birth
size with subsequent slower BMI gain; class 3, smaller birth size with
subsequent acceleratedBMI gain; class 4, average birth sizewith sub-
sequent slower BMI gain; and class 5, smaller birth size with subse-
quent slower BMI gain. For analysis, class 4 was used as the
reference category.

Covariates
Information on covariates was obtained through interviewer-
administered questionnaires answered by mothers at recruitment
during the first trimester of pregnancy and included parity, smok-
ing, socioeconomic status (SES), and maternal and paternal

prepregnancy height and weight (which were used to calculate
BMI). SES was derived from maternal and paternal self-reported
occupation and recoded (using the higher of the two) using a
widely used Spanish adaptation of the International ISCO88
coding system (high= I–II, managers/technicians; middle = III,
skilled; low= IV–V, semiskilled/unskilled).50 Maternal smok-
ing during pregnancy was analyzed as “yes” if they indicated
smoking during the first and/or third trimesters and “none” if
they did not smoke. Maternal age at delivery (in years) was cal-
culated using mother’s birth date and the child’s delivery date.
Mediterranean diet score is an indicator of diet quality and was
based on food frequency questionnaires taken during the first
and third trimesters.51 Information on each child’s sex was
obtained from clinical records.

Statistical Analysis
Descriptive statistics were used to summarize population averages.
To handle missing values for the chemical exposures (not all par-
ticipants included had all chemicals measured; missing ranged
from 11.3% in the OCs to 48.7% in the phthalate metabolites) and
covariates (missing ranged from 0.1% in maternal age to 5.9% in
paternal BMI), we followed a multiple imputation approach under
the assumption of the data being missing at random.52 Chemicals
measured but found to be below the LOD were instead imputed as
the LOD divided by 2, given that they were recorded as below
LOD rather than as missing and to avoid generating an above-
LOD value. We generated 20 imputed data sets using the ice com-
mand (with 10 cycles) in Stata. To improve prediction, variables
included in the imputation procedure were all those to be
included in the regression models [exposures (all 24 metabolites
log-transformed), outcome (BMI trajectories), and covariates].
Covariates were selected for inclusion in the main analysis mod-
els based on previous knowledge45,53–58 and using a directed
acyclic graph approach (Figure S1) and included parity (0 or
≥1), SES, maternal and paternal prepregnancy BMI (in kilo-
grams per meter squared), maternal age at delivery, maternal
smoking during pregnancy, maternal Mediterranean diet score
during pregnancy, child sex, and subcohort (Gipuzkoa, Sabadell,
or Valencia). Further, additional predictor variables based on
their relationship to the included covariates were included in im-
putation models59: maternal education (less than secondary or
secondary completed), gestational weight gain (in kilograms),
type of delivery (vaginal, cesarean, or instrumental), maternal
country of birth (Spanish or foreigner), maternal previous
breastfeeding (yes or no), child birth weight (in grams), child
gestational age (in weeks), and child age at study follow-up (in
years). For the imputation, continuous variables were treated
using predictive mean matching, whereas binary and categorical
variables were treated using logistic, ordinal, or multinomial mod-
els depending on variable type.

To estimate correlations between the chemical concentrations,
Pearson correlation coefficients were calculated. Associations
between chemical concentrations and BMI trajectories were ana-
lyzed by running single exposure models using multinomial
logistic regression, which were exponentiated to relative risk
ratios (RRRs) and using trajectory class 4 as the reference trajec-
tory. Next, we tested the association between the chemical mix-
ture, including concentrations and the BMI trajectories, using
Bayesian weighted quantile sum (BWQS) regression. The
BWQS regression is an extension of WQS regression that sum-
marizes the overall exposure to the mixture by estimating a single
weighted index while accounting for the individual contribution
of each concentration of the mixture using weights.60 In addition,
it allows for bidirectionality of the mixture coefficient, allowing
more flexibility to the model and improving statistical power.60

Figure 1. BMI z-score growth trajectories from 0 to 9 years of age
(N =1,911) for the INMA birth cohort study. Class 1: higher birth size with
accelerated BMI gain (N =212, 11.1%). Class 2: higher birth size with
slower BMI gain (N =513, 26.8%). Class 3: lower birth size with accelerated
BMI gain (N =292, 15.3%). Class 4: average birth size with slower BMI
gain (N =607, 31.8%) (reference). Class 5: lower birth size with slower BMI
gain (N =287, 15.0%). See Table S11 for corresponding class-specific mean
predicted trajectory values for each class by selected age groups. Note: BMI,
body mass index; INMA, INfancia y Medio Ambiente.
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Using the binomial function, each BMI trajectory was tested
against the reference trajectory. We exponentiated the beta esti-
mates to odds ratios (ORs) where the interpretation of the OR (X)
is that for every 1-quartile increase in the BWQS weighted index
there is an X increase in the odds of the tested trajectory com-
pared with the reference trajectory. TRCS was not included in the
mixture because it was not measured in the Gipuzkoa cohort.
Given that BWQS regression gives each concentration a “weight”
indicating their ranking in the mixture, we did not run individual
analyses for each chemical subgroup.

As a sensitivity analysis, we repeated the single exposure
models using complete case data. In addition, we conducted the
following sensitivity analyses to better inform public health prac-
tices that may need to target specific vulnerable groups: a) strati-
fication of single and multiple exposure models by child sex
owing to the sex-specificity of some EDCs reported in the litera-
ture,16 and b) stratification of single and multiple exposure mod-
els by SES to evaluate vulnerability to EDC effects.53 Statistical
significance was defined as a confidence interval (CI) level of
95%. Imputation and regression analyses were done using Stata
(version 14). BWQS regression was conducted using RStudio
(version 4.0.3).

Results

Study Population
Figure 1 and Table 1 show the distribution of BMI trajectories
and the main characteristics for the study population (n=1,911
mother–child pairs). The majority of children (32%) belonged to
the reference BMI trajectory, class 4—average birth size and
slower BMI gain, whereas the least number of children (11%)
belonged to class 1—larger birth size and accelerated BMI gain
(Figure 1). No differences were found in the main characteristics

between unimputed and imputed data sets (Table S5). Population
characteristics were generally consistent across the BMI trajecto-
ries with a few differences (Table 1). When compared with all
BMI trajectories combined, class 1 had a higher percentage
belonging to the low SES group and mothers who smoked during
pregnancy. In addition, more mothers with children in class 5
were nulliparous, and maternal and paternal prepregnancy BMI
were slightly higher in classes 1 and 3 (Table 1). The geometric
means (GMs) of the EDC concentrations were generally similar
between the unimputed and the imputed data sets (Table 2).
Correlations between the chemical exposures were generally high
within distinct classes of chemicals, namely phthalate metabolites,
PFAS, and PCBs, but not between one another (Figures S2–S3).

Single Exposure Models
Associations from single exposure models and BMI trajectories,
in reference to class 4 (average birth size followed by slower
BMI gain), are shown in Figure 2 and Table S6. Prenatal expo-
sure to all individual OCs (HCB, DDE, and PCB-138, -153, and
-180) was associated with a statistically significant increase in
risk of belonging to the BMI trajectory of lower birth size fol-
lowed by accelerated BMI gain (class 3) by 19%–25% per dou-
bling of exposure concentration [e.g., class 3 vs. 4: DDE
RRR=1:19 (95% CI: 1.05, 1.35); HCB RRR=1:25 (95% CI:
1.09, 1.42)]. In addition, HCB and DDE concentrations were
associated with an increased risk of belonging to the BMI trajec-
tory of higher birth size followed by accelerated BMI gain (class
1) [class 1 vs. 4: HCB RRR=1:17 (95% CI: 1.01, 1.36); DDE
RRR=1:15 (95% CI: 1.00, 1.32)]. Regarding PFAS, a doubling
of prenatal PFNA exposure was associated with a 32% increase
in risk of belonging to class 3 (class 3 vs. 4: RRR=1:32;
95% CI: 1.05, 1.66); for other PFAS, RRR estimates for this class

Table 1. Characteristics [n (%) or mean±SD] of the study population (n=1,911) for the INMA birth cohort study.

Characteristic

Missing
Unimputed

data

Class 1:
higher birth
size with
accelerated
BMI gain

Class 2:
higher birth
size with
slower

BMI gain

Class 3:
lower birth
size with
accelerated
BMI gain

Class 4:
average
birth size

with slower
BMI gain

Class 5:
lower birth
size with
slower

BMI gain

N N =1,911
N =212
(11.1%)

N =513
(26.8%)

N =292
(15.3%)

N =607
(31.8%)

N =287
(15.0%)

Subcohort 0 — — — — — —
Gipuzkoa — 556 (29.1) 59 (27.8) 168 (32.8) 83 (28.4) 173 (28.5) 73 (25.4)
Sabadell — 659 (34.5) 68 (32.1) 170 (33.1) 88 (30.1) 226 (37.2) 107 (37.3)
Valencia — 696 (36.4) 85 (40.1) 175 (34.1) 121 (41.44) 208 (34.3) 107 (37.3)
SES 94 — — — — — —
High — 594 (32.7) 47 (23.5) 154 (31.8) 97 (34.6) 202 (34.8) 94 (34.6)
Middle — 477 (26.2) 57 (28.5) 129 (26.6) 66 (23.6) 157 (27.1) 68 (25.0)
Low — 746 (41.1) 96 (48) 202 (41.7) 117 (41.8) 221 (38.1) 110 (40.4)
Smoking during pregnancy 33 — — — — — —
None — 1,293 (68.9) 125 (59.8) 360 (71.0) 194 (67.4) 417 (69.7) 197 (71.4)
Yes — 585 (31.1) 84 (40.2) 147 (29.0) 94 (32.6) 181 (30.3) 79 (28.6)
Parity 96 — — — — — —
0 — 1,012 (55.8) 109 (54.5) 234 (48.4) 173 (61.8) 316 (54.5) 180 (66.4)
≥1 — 803 (44.2) 91 (45.5) 250 (51.7) 107 (38.2) 264 (45.5) 91 (33.6)

Maternal age at delivery (y) 2 31:8± 4:2 31:6± 4:2 31:9± 4:2 32:0± 4:0 31:7± 4:2 31:8± 4:2
Maternal prepregnancy BMI

(kg=m2)
17 23:5± 4:2 25:2± 5:0 23:3± 3:6 24:6± 5:2 23:0± 4:1 22:6± 3:6

Paternal BMI (prepregnancy)
(kg=m2)

112 25:8± 3:4 26:7± 4:0 25:8± 3:1 26:7± 3:5 25:2± 3:3 25:1± 3:1

Maternal Mediterranean diet
score

94 8:0± 2:7 7:9± 2:6 8:2± 2:7 8:0± 2:6 7:9± 2:7 7:9± 2:8

Child sex 0 — — — — — —
Female — 927 (48.5) 85 (40.1) 242 (47.2) 143 (49.0) 326 (53.7) 131 (45.6)
Male — 984 (51.5) 127 (59.9) 271 (52.8) 149 (51.0) 281 (46.3) 156 (54.4)

Note: —, not applicable; BMI, body mass index; INMA, INfancia y Medio Ambiente; N, number of observations; SD, standard deviation; SES, socioeconomic status.
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were increased but did not reach statistical significance. No sig-
nificant associations were observed for any phthalate metabolites
or phenols.

In complete case analyses, results from the single exposure
models were similar or somewhat stronger than imputed models
and had the same directionality (Table S7). In addition to the stat-
istically significant findings of the imputed models, the complete
case analyses showed statistically significant associations between
MBzP, MEHP, PFOA, and PFOS concentrations and increased
probability of belonging to class 3.

In stratified analyses by sex, associations generally followed a pat-
tern similar to that of the overall population, with increases in risk of
belonging to class 3 seen for OCs and PFAS in females and males,
although these did not always reach statistical significance (Table S8).
Statistically significantly increasedRRRs for class 3were observed in
males for HCB, DDE, and PCB-153 [class 3 vs. 4: RRR=1:27 (95%
CI: 1.06, 1.52), 1.30 (95% CI: 1.10, 1.54), and 1.26 (95% CI: 1.00,
1.59), respectively], and in females for HCB (RRR=1:23; 95% CI:
1.01, 1.49). In males, exposure to DDEwas associated with increased
risk of belonging to class 1 vs. 4: (RRR=1:21; 95% CI: 1.01, 1.46).
Although not significant in overall analyses, MEHHP exposure was
associated with an increased probability of belonging to the trajectory
of higher birth size followed by slower BMI gain (class 2) in females
[class 2 vs. 4: (RRR=1:23; 95%CI: 1.01, 1.51)].

In stratified analyses by SES, associations varied depending
on the EDC and no one particular SES group was consistently at
a higher risk than others (Table S9). Statistically significant risk

increases of belonging to classes 1 and 3 were seen for HCB in
those of middle SES [RRR=1:52 (95% CI: 1.08, 2.15) and 1.53
(95% CI: 1.13, 2.07), respectively]. Although increased RRRs
were found for DDE and class 1 in children of low SES
(RRR=1:23; 95% CI: 1.03, 1.48) and class 3 in children of high
SES (RRR=1:39; 95% CI: 1.07, 1.80). Associations for PCBs
were generally higher among children of high SES, with PCB-
138 and -153 and class 3 reaching statistical significance
[RRR=1:39 (95% CI: 1.02, 2.14) and 1.48 (95% CI: 1.02, 2.14),
respectively]. PFAS exposures were associated with higher
RRRs in both low and high SES groups, particularly within
classes 1 and 3, and association of PFNA exposure and belonging
to class 3 reached statistical significance among those of low
SES (RRR=1:49; 95% CI: 1.07, 2.07). Although not significant
in overall analyses, in children of low SES exposure to MEHP,
MEHHP, and MEOHP was associated with increased probability
of belonging to a BMI trajectory of lower birth size followed by
slower BMI gain (class 5), and class 2 for MEHHP and MEOHP
only [e.g., class 5 vs. 4: MEHP RRR=1:30 (95% CI: 1.01, 1.67);
class 2 vs. 4: MEOHP RRR=1:37 (95% CI: 1.03, 1.81)].

Multiple Exposure Models
In mixture models using BWQS regression, the mixture effect
was positively associated with increased odds of belonging to
BMI trajectory class 3 in reference to class 4 [OR per 1-quantile
increase of the EDC mixture= 1:70; 95% credible interval (CrI):

Figure 2. Associations (RRRs and 95% CIs) between prenatal EDC exposure and BMI trajectories: single exposure models (N =1,911) for the INMA birth
cohort study. BMI trajectory descriptions: class 1, higher birth size with accelerated BMI gain; class 2, higher birth size with slower BMI gain; class 3, lower
birth size with accelerated BMI gain; class 4, average birth size with slower BMI gain (reference); class 5, lower birth size with slower BMI gain. For EDC
complete names, see Table 2. All RRRs are in reference to class 4. Associations were determined using imputed data (m=20). RRRs are from multinomial
logistic regression models adjusted for child sex, parity, SES, maternal and paternal BMI, maternal smoking, maternal age, Mediterranean diet score, and sub-
cohort. See Table S6 for corresponding numeric data. Note: BMI, body mass index; CI, confidence interval; EDC, endocrine-disrupting chemical; INMA,
INfancia y Medio Ambiente; RRR, relative risk ratio.
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1.03, 2.61] (Table 3). Components of HCB; DDE; PCB-138,
-153, -180; and BP-3 had somewhat higher weights (in that order)
and thus contributed slightly more to the overall mixture (Table
S10). No associations between the EDC mixture and the other
BMI trajectory classes were observed (Table 3). When stratifying
by sex, the EDC mixture was positively associated with BMI tra-
jectory class 2 in females (OR=1:57; 95% CrI: 1.03, 2.41) but
not males (OR=0:79; 95% CrI: 0.50, 1.25) (Table 3). In stratifi-
cation by SES, the EDC mixture was associated with the class 3
BMI trajectory in children of low SES (OR=2:32; 95% CrI:
1.28, 4.44), whereas there was no evidence for an association in
children from middle or high SES groups (OR=1:09 and 1.05,
respectively).

Discussion
In this large prospective cohort of mother–child pairs in Spain,
HCB, DDE, PCBs, and PFNA were associated with an increased
risk of belonging to a BMI trajectory of lower birth size and subse-
quent accelerated BMI gain. This association was also observed
when considering the whole mixture of 23 EDCs, with OCs con-
tributing the most to the mixture effect. The EDC mixture effect
was strongest and statistically significant in those of low SES.
Further, HCB and DDE exposure was associated with higher prob-
ability to belong to aBMI trajectory of higher birth size and acceler-
ated BMI gain.

Our findings suggest that prenatal exposure to HCB and DDE
was associated with the two trajectories characterized by acceler-
ated BMI gain (starting from lower and higher birth size), and
that PCB exposure was associated with the trajectory of lower
birth size and subsequent accelerated BMI gain. These findings
are largely in line with existing literature. A pooled analysis on
four Flemish birth cohorts found that prenatal DDE exposure was
associated with increased birth weight,19 although we too found
DDE (and HCB) exposure to be associated with a trajectory char-
acterized by higher birth size, we also found those exposures
linked to a different trajectory characterized by lower birth size.
Given that both of the trajectories are followed by subsequent
accelerated BMI gain, this likely indicates that these exposures
are more likely to be associated by accelerated BMI gain in chil-
dren independent of birth size. In the same Flemish study, an
inverse association was found for birth weight and congeners of
PCBs19 (a finding previously described in a meta-analysis of 12
European birth cohorts61). Further, an earlier study using INMA
data found that prenatal exposure to HCB and DDE was associ-
ated with rapid growth during the first 6 months of life; however,

associations were null for prenatal exposure to PCBs.62 A pooled
study from seven European cohorts found that prenatal DDE ex-
posure was associated with increased growth rate (change in
weight-for-age z-score) from birth to 2 years of age.25 A review
highlighted that exposure to HCB and DDE was consistently
associated with increased BMI during childhood, but that evi-
dence is less clear for PCBs.17 These previous works studied
birth size and childhood weight/growth parameters independ-
ently. Our study combined these growth parameters in the same
trajectory and provides novel evidence to support a relationship
between prenatal exposure to HCB, DDE, and PCBs and acceler-
ated BMI gain.

Regarding PFAS, to our knowledge our study is the first to
use BMI trajectories beginning from birth and find that exposure
to PFAS, especially PFNA, was associated with a higher proba-
bility of belonging to a trajectory of lower birth size and acceler-
ated BMI gain. A recent review and meta-analysis on persistent
EDCs included only legacy PFAS (PFOA and PFOS) and did not
find conclusive evidence for an association between these chemi-
cals and childhood obesity.17 However, previous reviews did
conclude that PFAS were associated with a rapid increase in BMI
during childhood,63 as well as with excess adiposity and risk of
obesity during childhood.15,64 Further, a review highlighted that
PFAS levels during pregnancy were associated with decreases in
birth weight.65 This relationship may be due to reverse causation
bias in studies where PFAS were analyzed in blood samples
taken during late pregnancy.66 However, our study used samples
taken during the first trimester, so this bias is unlikely to have
affected our results.

Regarding the nonpersistent EDCs—phthalates and phenols
(including parabens)—reviews on the topic have indicated
largely mixed results with regard to prenatal exposure and later
BMI.15,64 A recent systematic review and meta-analysis found
a significant negative relationship between di(2-ethylhexyl)
phthalate and later BMI z-score while also reporting inconsis-
tent results between phthalates overall and later BMI in their
review.67 In terms of growth measures outside of BMI, the
INMA study previously reported a negative association with
exposure to high-molecular-weight phthalates and rapid growth
during infancy in males,41 whereas other studies reported posi-
tive associations with rapid growth during infancy and higher
probability of following an overweight trajectory from infancy
to adolescence in a sex-specific and dose-specific man-
ner.23,26,27 We did not observe any results with any of the phe-
nols. BPA is the most frequently studied phenol, but results are
inconsistent.15,64

Table 3. Associations between exposure to prenatal EDC mixture and BMI trajectories from BWQS regression expressed as ORs (95% CrIs) using imputed
data (N =1,911), given unstratified and stratified by sex and socioeconomic status; for the INMA birth cohort study.

Models

Class 1: higher birth
size with acceler-
ated BMI gain

Class 2: higher birth
size with slower

BMI gain

Class 3: lower birth
size with acceler-
ated BMI gain

Class 4: average
birth size with

slower BMI gain

Class 5: lower birth
size with slower

BMI gain

N =212 N =513 N =292 N =607 N =287

Unstratifieda 1.15 (0.68, 1.97) 1.16 (0.86, 1.58) 1.70 (1.03, 2.61) Ref 1.23 (0.83, 1.88)
Sexb

Female 1.38 (0.61, 3.10) 1.57 (1.03, 2.41) 1.43 (0.81, 2.59) Ref 1.32 (0.76, 2.32)
Male 1.11 (0.61, 2.08) 0.79 (0.50, 1.25) 1.84 (0.88, 3.71) Ref 1.08 (0.63, 1.92)
SESc

High 1.68 (0.66, 4.31) 1.02 (0.63, 1.72) 1.05 (0.49, 1.44) Ref 1.23 (0.63, 2.44)
Middle 0.68 (0.26, 1.97) 1.39 (0.61, 2.23) 1.09 (0.47, 2.72) Ref 0.90 (0.38, 2.08)
Low 1.25 (0.67, 2.41) 1.38 (0.86, 2.27) 2.32 (1.28, 4.44) Ref 1.42 (0.73, 2.72)

Note: Using data from the first imputed data set. BMI, body mass index; BWQS, Bayesian weighted quantile sum; CrI, credible interval; EDC, endocrine-disrupting chemical; INMA,
INfancia y Medio Ambiente; N, number of observations; OR, odds ratio; Ref, reference; SES, socioeconomic status.
aUnstratified models adjusted for child sex, parity, SES, maternal and paternal BMI, maternal smoking, maternal age, Mediterranean diet score, and subcohort.
bSex-stratified models adjusted for the same as unstratified models with the exception of sex.
cSES-stratified models adjusted for the same as unstratified models with the exception of SES.
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The only previous study that investigated an EDCs mixture
(which included phthalates, plasticizers, bisphenols, TRCS,
polycyclic aromatic hydrocarbons, pesticides, PFAS, OCs, and
PCBs) with children’s growth parameters from their weight tra-
jectory found a positive association with a mixture that
included 41 metabolites and lower birth weight z-scores and
slower weight gain parameters until 5.5 years of age.24 They
reported that TRCS and PFOA were primary drivers of these
associations given that they had the highest WQS weights.
Similar to our study, Svensson et al.24 found an association
with lower birth size associated with their EDC mixture.
However, contrary to our results, they found their mixture was
associated with subsequent slower or delayed growth, whereas
we found our mixture was associated with subsequent acceler-
ated growth. This difference could be due several factors, such
as the following:

1. Differences in study population: Although both studies
come from Europe and the mothers had similar age and BMI,
the SELMA study size was somewhat smaller (n=1,118 vs.
our study at 1,911). The SELMA study reported higher
SES, with 64% reporting college education, whereas
INMA has only 32.7% in the higher SES category
(assuming education and SES are related to one another),
and INMA reported more maternal smoking (31.1% vs.
SELMA’s 5.5%). Although sample size may not have con-
tributed much to the differences observed, SES and smoking
are two factors known to affect chemical exposure.

2. Differences in metabolites included in the mixture: The
SELMAstudy included 41metabolites, whereas we included
23. Although chemicals were from similar chemical groups,
one of the primary drivers in the SELMA study (TRCS, an
antibacterial and antifungal agent) was not included in our
mixture analysis because one the cohorts did not measure it.
In single exposure models, where we did analyze TRCS, we
did not observe significant results between TRCS and any of
the growth trajectories.

3. Child age: The SELMAstudy used growth until 5.5 years of
age, whereas we used growth until 9 years of age. Including
growth for an additional 4 ymay have allowed us to calculate
more precise trajectories given that the children were older;
however, in both studies, the children were prepubertal, so it
is unlikely the differences observed are due to this.

4. Calculation of the growth parameters: We used LCGA
to estimate BMI growth trajectories, whereas the SELMA
study used a double-logistic growth model and extracted
growth parameters of weight rather than BMI (infant
growth spurt rate and peak growth velocity).

5. Mixture model selected: The SELMA study chose WQS
regression, whereas we selected BWQS regression. Although
similar, BWQS regression builds on the framework of WQS
regression to increase model flexibility. Given that ours are
the first studies to analyze EDC mixtures with growth trajec-
tories, it is important for the findings to be replicated in other
studies.

In addition, we stratified our results by sex and SES. In single
exposure models we did not observe strong patterns between the
stratified groups; however, in the mixture exposure models we
observed a statistically significant association with the trajectory of
lower birth size and accelerated BMI gain in those of low SES,
whereas there was no evidence of an association in the middle or
high SES groups. Previous work on the social determinants of
EDC exposure has reported results that support higher exposure to
OCs in higher SES groups.53,57,68 However, research has reported
mixed results with PFAS and phthalates and SES.69–71 Given that
our mixture was driven by OCs and research has shown OC

concentrations (primarily PCBs) are higher in higher SES groups,
we had expected to find significant results with the high SES group;
however, we found the opposite. This may indicate that although
higher SES groups may have higher levels of certain EDCs, indi-
viduals of lower SES groups may be more vulnerable to EDC
effects due to other factors. Currently, research is lacking in this
area; however, this is an important finding and future studies
should focus on groups that may be more vulnerable, including
those of low SES. Our analyses stratifying the mixture models by
sex did not indicate large differences between males and females,
even though results were somewhat higher in males for class 3 and
in females for class 2. Differences in sex may be attributable to
effects on sex hormones (e.g., estrogens and androgens) that play a
role in adipogenesis.

The exact mechanism by which prenatal exposure to EDCs
may affect childhood growth is unclear, and it may differ depend-
ing on the chemical in question. Nonetheless, the obesogen hy-
pothesis states that EDCs interfere with the endocrine and
metabolic systems, thus altering normal growth patterns, weight
gain, and obesity.72 Supporting literature has identified the perox-
isome proliferator-activated receptor (PPAR)-alpha and -gamma
pathways as key contributors. These receptors regulate lipid me-
tabolism, healthy placenta function, and fetal and child develop-
ment, indicating their ability to influence child growth starting
from prenatal life.73 In addition, EDCs have been found to be
able to induce adipogenic differentiation and to decrease meta-
bolic efficiency, both of which can lead to obesity.64,74,75

This study has some strengths worth mentioning. The data
used is part of a large collaborative longitudinal study in Spain
that began following mother–child pairs from the beginning of
pregnancy. The multiple follow-up points throughout infancy and
childhood up to 9 years of age enabled the calculation of BMI
trajectories, another strength of this study. By using LCGA, we
were able to assign BMI trajectory classes to our population,
defined by specific growth parameters that could be used for later
regression analyses. This method offers ease of interpretation, but
it may assign a child to a BMI trajectory they do not really fol-
low, although that would be the minority. We also included a
mixture of EDCs that included phthalates, phenols, OCs, and
PFAS. This wide variety of chemicals does not include all poten-
tially EDCs. However, it offers a good representation of those
that may affect childhood growth and those that humans are com-
monly exposed to. In addition, we were able to use a novel mix-
ture approach, BWQS regression, which allowed us to analyze an
EDC mixture more representative of real-life exposure and to
identify those chemicals that were driving the associations (e.g.,
those with the highest weights).

Our study should be interpreted with the following limitations
in mind. The nonpersistent chemicals in this study were analyzed
using only one or two spot urine samples or a pooled urine sample.
These types of chemicals have large variability in sample concen-
trations, which can lead tomeasurement error on the exposure vari-
able and, ultimately, bias associations toward the null owing to
regression dilution bias.76 This is not the case for the persistent
EDCs in our study (i.e., OCs and PFAS), which have long half-
lives and likely give a reliable estimate of exposure. Further, there
were missing values for many exposures in our study. To correct
for this, we used multiple imputation under the missing at random
assumption, which has been proven to give valid results, rather
than use complete case analysis, which can lead to selection bias.59

By imputing the exposures, we were also able to maintain a suffi-
cient sample for BWQS regression. Multiple imputation should be
a technique considered in future studies aiming to usemixture anal-
ysis, but it may have missing exposure values. However, a limita-
tion to using imputed data was that although we stratified our
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results by sex and SES, we could not formally test for interaction in
the multinomial logistic regression or BWQS models given that
the current statistical software does not support testing with an
imputed data set. Finally, multiple comparison issues are important
in single exposure models. We did not adjust for multiple testing in
our study because this can be overconservative (i.e., reduce type I
error at the expense of not detecting associations). Instead, the sin-
gle exposure models compliment the mixture models, reducing
copollutant confounding by simultaneously taking into account the
exposure variables. When looking at our results we found similar
results between the significant EDCs in the single exposure models
and those with the highest weights in BWQS regression, giving
confidence to our results. We based our main conclusions on the
similarities between these results.

Conclusions
Our results demonstrate that early life exposure to environmental
factors may potentially influence a child’s growth trajectory. Our
study found that chemical exposures and their mixture were
related to an increased risk of belonging to a trajectory of lower
birth size followed by accelerated BMI gain, and for some chemi-
cals (HCB and DDE) by higher birth size and accelerated BMI
gain. In both single and mixture EDC models, persistent EDCs
seemed to be the EDCs of most concern, and populations of low
SES appeared to be more vulnerable to the EDC mixture. Given
that accelerated growth has been linked to adverse health conse-
quences (e.g., hypertension, obesity, cardiovascular diseases, dia-
betes, cancers) in later life, it would be important for future
research to evaluate the health impacts of prenatal EDC exposure
over the life course.32
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