
Gut-Lung Axis Support Protocol

A Clinical Approach to Optimizing Respiratory Health Through the Microbiome

The Gut-Lung Axis in Clinical Practice

The intricate connection between the gut and lungs, known as the Gut–Lung Axis, is increasingly recognized as a key modulator of both respiratory and systemic immune function. This bidirectional communication is mediated by immune signaling pathways, microbial metabolites, and inflammatory signals, highlighting the systemic impact of the gut microbiome¹.

A central player in this cross-talk is the mucosal immune system, which connects the gastrointestinal and respiratory tracts, allowing for cross-talk between immune pathways. Among the most well studied mediators of this connection are short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, produced by gut bacteria through the fermentation of dietary fiber. While the lungs do not produce SCFAs in significant amounts, these metabolites enter systemic circulation and directly influence immune cell activity in peripheral tissues, including the lungs².

Advances in microbiome sequencing have significantly expanded our understanding of both the gut and lung microbiomes, consistently linking microbial imbalance (dysbiosis) to the development and progression of chronic respiratory concerns. Dysbiotic patterns, characterized by reduced SCFA production and increased intestinal permeability, have been associated with immune dysregulation, inflammatory responses, and weakened mucosal defense³.

Disruption of the Gut-Lung Axis, often driven by dysbiosis, compromises immune signaling, promoting dysregulation to both the gut microbiome and lungs. One key contributor is the over abundance of *Proteobacteria* and their byproducts like lipopolysaccharides (LPS). When gut barrier integrity is impacted, often due to factors like poor diet, medication use, stress, or environmental toxins (like cigarette smoke and air pollution), LPS can cross into the bloodstream and enter systemic circulation. Once in the lungs, LPS activates TLR4 receptors, upregulating NF-kB signaling and the release of pro-inflammatory cytokines (IL-1, IL-6, and TNF-a), which are key drivers of chronic airway dysfunction and immune dysregulation. Elevated *Proteobacteria* has also been linked to increased neutrophilic infiltration, tissue proteolysis, and the upregulation of matrix metalloproteinase-9 (MMP-9), all of which contribute to progressive lung tissue damage and respiratory stress. Interestingly, individuals with chronic respiratory struggles often report gastrointestinal symptoms and exhibit distinct gut microbiome profiles, further highlighting the bidirectional influence between the gut and lungs4-5.

Core Supplement Recommendations

res

Lung Support Probiotic

Dosage: 2 capsules daily with or without food

- Features three respiratory-specific probiotic strains
- Includes Turmeric, Holy Basil, and Vasaka
- Supports lung function, immune modulation, and gut barrier integrity via the Gut-Lung Axis*

res

prebeet® ENERGY Prebiotic

Dosage: 1 scoop daily, mixed in 8–10 oz of any liquid (best taken in the morning)

- Resistant starch + beetroot + B12
- Enhances microbial diversity, promotes SCFA production, supports metabolism, and energy without caffeine*

Additional Nutraceutical Support

Nutraceutical	Role in Respiratory Health
Vitamin D3/K2 ⁶⁻⁸	Supports immune regulation, lung function, and respiratory resilience
Omega-3 Fatty Acids ⁹	Reduces airway inflammation and supports immune balance
Magnesium Glycinate ¹⁰	Relaxes bronchial smooth muscle; supports airway function and reduces inflammation
Quercetin ¹¹	Acts as a natural antihistamine and antioxidant; supports mucosal stability
Vitamin C ¹²	Essential for immune defense, antioxidant protection, and maintaining healthy lung tissue
NAC (N-acetyl cysteine) ¹³	Precursor to glutathione; promotes mucolytic activity and lung detoxification

Lifestyle Recommendations

- ✓ Emphasize a nutrient-dense, anti-inflammatory, whole foods diet¹⁴
- Encourage an active lifestyle with regular movement and breathwork¹⁵
- Avoid smoking, vaping, and minimize exposure to environmental toxins¹⁶⁻¹⁷
- Prioritize stress management¹⁸
- Stay well-hydrated to support mucus thinning and natural detoxification. Aim for 8–10 glasses of water per day to promote optimal respiratory and systemic function¹⁹

References

 $^1Druszczynska\,M, Sadowska\,B, Kulesza\,J, et\,al.\,The\,intriguing\,connection\,between\,the\,gut\,and\,lung\,microbiomes.\,Pathogens.\,2024;13(11):1005.\,doi:10.3390/pathogens13111005$

 2 Karakasidis E, Kotsiou OS, Gourgoulianis Kl. Lung and gut microbiome in COPD. J Pers Med. 2023;13(5):804. doi:10.3390/jpm13050804

 3 Whiteside SA, McGinniss JE, Collman RG. The lung microbiome: progress and promise. J Clin Invest. 2021;131(15):e150473. doi:10.1172/JC1150473

⁴Wenger NM, Qiao L, Nicola T, et al. Efficacy of a probiotic and herbal supplement in models of lung inflammation. *Microorganisms*. 2022;10(11):2136. doi:10.3390/microorganisms1011213

 5 Wenger NM, Qiao L, Nicola T, et al. Clinical trial of a probiotic and herbal supplement for lung health. Front Nutr. 2023;10:1168582. doi:10.3389/fnut.2023.1168582

 6 Jorde I, Stegemann-Koniszewski S, Papra K, et al. Association of serum vitamin D levels with disease severity in COPD. J Thorac Dis. 2021;13(6):3597-3609. doi:10.21037/jtd-20-3221

 7 Wang Y, Yang W, Liu L, et al. Vitamin K2 attenuates LPS-induced acute lung injury. PLoS One. 2023;18(11):e0294763. doi:10.1371/journal.pone.0294763

8Atieh O, Daher J, Durieux JC, et al. Vitamins K2 and D3 improve long COVID and inflammation: randomized trial. *Nutrients*. 2025;17(2):304. doi:10.3390/nu17020304

9Huang Z, Zheng J, Huang W, et al. Omega-3 fatty acids for acute lung injury: a systematic review. World J Surg Oncol. 2020;18(1):235. doi:10.1186/s12957-020-01916-6

¹ºZhao Y, Li H, Wang Z, et al. Magnesium deficiency and COPD in NHANES 2005–2018. Sci Rep. 2024;14:25981. doi:10.1038/s41598-024-76374-1

¹¹Han MK, Barreto TA, Martinez FJ, et al. Quercetin supplementation in COPD: safety trial. *BMJ Open Respir Res*. 2020;7(1):e000392. doi:10.1136/bmjresp-2018-000392

 12 Holford P, Carr AC, Jovic TH, et al. Vitamin C as adjunctive therapy for respiratory infection and COVID-19. Nutrients. 2020;12(12):3760. doi:10.3390/nu12123760

¹³Mokra D, Mokry J, Barosova R, et al. Advances in the use of NAC in chronic respiratory diseases. Antioxidants. 2023;12(9):1713. doi:10.3390/antiox12091713

¹⁴Berthon BS, Wood LG. Nutrition and respiratory health—feature review. *Nutrients*. 2015;7(3):1618-1643. doi:10.3390/nu7031618

 $^{15} Your \, lungs \, and \, exercise. \textit{Breathe (Sheff)}. \, 2016; 12(1): 97-100. \, doi: 10.1183/20734735. ELF12111. \, Appendix a contraction of the contraction of t$

¹⁶American Lung Association. What's in a cigarette? https://www.lung.org/quit-smoking/smoking-facts/whats-in-a-cigarette

¹⁷U.S. Consumer Product Safety Commission. The inside story: a guide to indoor air quality. https://www.cpsc.gov/Safety-Education/Safety-Guides/Home/The-Inside-Story-A-Guide-to-Indoor-Air-Quality

18Mental wellbeing and lung health. *Breathe (Sheff)*. 2020;16(2):162ELF. doi:10.1183/20734735.ELF162

¹⁹Pigakis KM, Stavrou VT, Pantazopoulos I, et al. Effect of hydration on pulmonary function in cyclists. *Adv Respir Med.* 2023;91(3):239-253. doi:10.3390/arm91030019