stay updated with our newsletter

Autistic Children Show Underdeveloped Range & Volume of Gut Bacteria

autisic children

As small study from the journal Gut sheds light on the bacterial composition of the gut in autistic children. Researchers say the gut bacteria is distinctive and underdeveloped, but is not related to their diet.

autistic children and the gut microbiome

The research found these children have significantly fewer bacteria linked to neurotransmitter activity and 5 species of bacteria that aren’t typically found in the guts of children without the condition. This suggests there may be a characteristic microbial profile for autism, which could pave the way for treatment early on.

Apart from genetic factors, it has been suggested that the gut microbiome may have a part to play in autism spectrum disorders. The evidence suggests that the pathway between gut bacteria and the central-nervous system, referred to as the gut-brain axis, has a profound effect on social behaviors.

Diagnosing autism spectrum disorder can be difficult, because there is no definitive medical test and diagnosis is based on physician assessment. Therefore, the researchers wanted to see if 3-to-6 year olds with autism might harbor a microbiome that differs significantly from that of typically developing children. Again, the hope is that this information might be used to facilitate early treatment.

Study Results for Autistic Children and Gut Microbiome

They compared the range, volume, and associated functions of bacteria in the stool samples of 128 Chinese children, 64 of whom had autism spectrum disorder and 64 of whom did not.

  • The factors most strongly and independently associated with microbiome composition in the stool samples were age, autism, and weight (BMI). Diet wasn’t an influential factor.
  • The stool samples of children with autism displayed a greater variety of microbes than those matched for age and weight who didn’t have the condition.
  • Clostridium, Dialister and Coprobacillus were enriched in children with autism while Faecalibacterium was significantly decreased.

Several Clostridium species enriched in autistic children closely interacted with each other and formed a connected group. Clostridia species have been linked with autism via the production of clostridial toxins, which can damage the central nervous system, the researchers noted.

The gut microbiome composition in children with autism differed substantially from that of children without the condition, with five bacterial species largely accounting for the difference: Alistipes indistinctus; candidate division_TM7_ isolate_TM7c (single cell organism); Streptococcus cristatus; Eubacterium limosum; and Streptococcus oligofermentans. These differences were further confirmed in a separate group of 18 children, 8 with autism and 10 without.

Importantly, bacteria associated with neurotransmitter activities were substantially reduced in children with autism. Some 26 age-related bacterial species were identified as proxies of typical development of the gut microbiome by age. But these associations were absent in children with autism, suggesting abnormal development of the gut microbiome during the early life of these children, say the researchers.

In summary:

  • Gut microbiome composition was not associated with diet in this cohort.
  • Researchers identified five bacteria markers that differentiate children with ASD from typically developing (TD) children in a discovery set (AUC 82.6%) and validated the findings in an independent cohort (AUC 76.2%).
  • Microbial functions relating to neurotransmitter biosynthesis are significantly decreased in children with ASD compared with TD children.
  • This demonstrates for the first time persistent under-development of gut microbiome in children with ASD relative to age-matched and gender-matched TD children.
  • The study supports the potential role of non-invasive prediction of ASD based on fecal bacteria markers and age-related bacteria development profile.
  • Future therapeutics targeting reconstitution of gut microbiota in early life and increasing abundance of neurotransmitter-synthesised bacteria such as Faecalibacterium should be explored for ASD.

This is a small study and the gut microbiome can vary according to geographical region. Nevertheless, the researchers write: “Our study shows for the first time that the gut microbiota of children with autism is abnormally developed and lags that of age-matched peers. As development of microbial communities within the gastrointestinal tract during childhood represents a critical window of human growth and health, shifts in the gut microbiota during early life development may have important functional roles in the pathogenesis of [autism spectrum disorder] and thus warrants extensive investigation.”

They conclude: “Our study supports the potential role of non-invasive prediction of [autism spectrum disorder] based on faecal bacteria markers and age-related bacteria development profile. Future therapeutics targeting reconstitution of gut microbiota in early life and increasing abundance of neurotransmitter-synthesised bacteria such as Faecalibacterium should be explored for [autism spectrum disorder].”

Source: Wan Y, Zuo T, Xu Z, et al. Underdevelopment of the gut microbiota and bacteria species as non-invasive markers of prediction in children with autism spectrum disorder. Gut Published Online First: 26 July 2021. doi: 10.1136/gutjnl-2020-324015

Research Articles, Webinars, Podcasts, Case Reports and Practice Management Guidance plus Interviews with Integrative Medicine Experts

Our newsletters include research round-ups with a quick-read synopsis and the full study for download. Get access to webinars, case reports, practice management guidance and interviews with integrative medicine thought leaders.
Subscribe today!


Weekly round-up, access to thought leaders, and articles to help you improve health outcomes and the success of your practice.